The sugar beet moth, Scrobipalpa ocellatella (Boyd), one of the most severe sugar beet pests, causes quantitative and qualitative yield losses late in the autumn. Previously, it was shown that low temperature and short-day photoperiod together cause diapause induction in pupae. Here, the interaction of the critical elements of the diapause induction, including the period (PER), timeless (TIM), prothoracicotropic hormone (PTTH), and ecdysteroid titer, were investigated. Immunohistochemistry results showed that the number of period immunoreactivity (PER-ir) and TIM-ir cells in nondiapause pupae (NDP) was lower than in the brain of the diapause pupae (DP). Moreover, the number of PER-ir and TIM-ir cells in the protocerebrum and optic lobe (OL) of NDP was lower than DP. Moreover, lower PTTH content in the brain and hemolymph of DP was confirmed by competitive enzyme-linked immunosorbent assay. Enzyme immunoassay showed a lower 20-hydroxyecdysone (20E) titer in the hemolymph of the DP compared with the NDP. Within a short-day condition, PER and TIM titers increased in the brain leading to decreasing PTTH titers in the brain and hemolymph that caused decreasing 20E titer in the hemolymph, leading to the induction of diapause. This study suggests that PER and TIM could be one of the brain factors that play an essential role in regulating diapause in S. ocellatella.

Download full-text PDF

Source
http://dx.doi.org/10.1002/arch.21790DOI Listing

Publication Analysis

Top Keywords

sugar beet
12
induction diapause
8
period timeless
8
ptth ecdysteroid
8
ecdysteroid titer
8
beet moth
8
moth scrobipalpa
8
scrobipalpa ocellatella
8
diapause induction
8
per-ir tim-ir
8

Similar Publications

Introduction: Weeds are a major factor affecting crop yield and quality. Accurate identification and localization of crops and weeds are essential for achieving automated weed management in precision agriculture, especially given the challenges in recognition accuracy and real-time processing in complex field environments. To address this issue, this paper proposes an efficient crop-weed segmentation model based on an improved UNet architecture and attention mechanisms to enhance both recognition accuracy and processing speed.

View Article and Find Full Text PDF

Effect of intra- and inter-specific plant interactions on the rhizosphere microbiome of a single target plant at different densities.

PLoS One

January 2025

Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America.

Root and rhizosphere studies often focus on analyzing single-plant microbiomes, with the literature containing minimum empirical information about the shared rhizosphere microbiome of multiple plants. Here, the rhizosphere of individual plants was analyzed in a microcosm study containing different combinations and densities (1-3 plants, 24 plants, and 48 plants) of cover crops: Medicago sativa, Brassica sp., and Fescue sp.

View Article and Find Full Text PDF

Beet crops are highly vulnerable to pest infestations throughout their growth cycle, which significantly affects crop development and yield. Timely and accurate pest identification is crucial for implementing effective control measures. Current pest detection tasks face two primary challenges: first, pests frequently blend into their environment due to similar colors, making it difficult to capture distinguishing features in the field; second, pest images exhibit scale variations under different viewing angles, lighting conditions, and distances, which complicates the detection process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!