Nanoemulsion Improves the Neuroprotective Effects of Curcumin in an Experimental Model of Parkinson's Disease.

Neurotox Res

Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Campus Saúde, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Centro, Rio Grande, RS, 96203-900, Brazil.

Published: June 2021

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor dysfunction. Recent studies have shown that curcumin (CUR) has neuroprotective effects in PD experimental models. However, its efficacy is limited due to low water solubility, bioavailability, and access to the central nervous system. In this study, we compared the effects of new curcumin-loaded nanoemulsions (NC) and free CUR in an experimental model of PD. Adult Swiss mice received NC or CUR (25 and 50 mg/kg) or vehicle orally for 30 days. Starting on the eighth day, they were administered rotenone (1 mg/kg) intraperitoneally until the 30th day. At the end of the treatment, motor assessment was evaluated by open field, pole test, and beam walking tests. Oxidative stress markers and mitochondrial complex I activity were measured in the brain tissue. Both NC and CUR treatment significantly improved motor impairment, reduced lipoperoxidation, modified antioxidant defenses, and prevented inhibition of complex I. However, NC was more effective in preventing motor impairment and inhibition of complex I when compared to CUR in the free form. In conclusion, our results suggest that NC effectively enhances the neuroprotective potential of CUR and is a promising nanomedical application for PD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12640-021-00362-wDOI Listing

Publication Analysis

Top Keywords

neuroprotective effects
8
experimental model
8
parkinson's disease
8
motor impairment
8
inhibition complex
8
cur
6
nanoemulsion improves
4
improves neuroprotective
4
effects curcumin
4
curcumin experimental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!