Triptolide (TPL) has been employed to treat hepatocellular carcinoma (HCC). However, the poor water solubility of TPL restricts its applications. Therefore, we prepared TPL-loaded cyclodextrin-based metal-organic framework (TPL@CD-MOF) to improve the solubility and bioavailability of TPL, thus enhancing the anti-tumor effect on HCC. The BET surface and the pore size of TPL@CD-MOF were 10.4 m·g and 1.1 nm, respectively. The results of XRD indicated that TPL in TPL@CD-MOF was encapsuled. TPL@CD-MOF showed a slower release than free TPL in vitro. Moreover, the CD-MOF improved the bioavailability of TPL. TPL@CD-MOF showed slightly higher, but statistically significant, anti-tumor efficacy in vitro and in vivo compared to free TPL. In addition, TPL@CD-MOF exhibited a modest improvement of the anti-tumor effects, which may be associated to the enhanced in vivo absorption. Overall, these findings suggested the potential CD-MOF as oral drug delivery carriers for anti-tumor drugs. The process of TPL loading into CD-MOF and its enhanced oral bioavailability and anti-tumor activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13346-021-00978-7 | DOI Listing |
Inorg Chem
January 2025
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China.
The discovery of new structures is very important for metal-organic framework (MOF) adsorbents and their application in gas separation, where the design of ligands and the selection of metal ions play a decisive role. Herein, we synthesized two isoreticular Zn-MOFs, UPC-250 and UPC-251, composed of imidazole-based tricarboxylic acid ligands and binuclear zinc clusters. The pore environment was regulated via modifying fluorine atoms at different positions of ligands, and one-step purification of ethylene from acetylene/ethylene/ethane ternary mixture was realized in UPC-251.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, P. R. China.
High-entropy metal-organic frameworks (HE-MOFs) hold promise as versatile materials, yet current rare examples are confined to low-valence elements in the fourth period, constraining their design and optimization for diverse applications. Here, a novel high-entropy, defect-rich and small-sized (32 nm) UiO-66 (ZrHfCeSnTi HE-UiO-66) has been synthesized for the first time, leveraging increased configurational entropy to achieve high tolerance to doping with diverse metal ions. The lattice distortion of HE-UiO-66 induces high exposure of metal nodes to create coordination unsaturated metal sites with a concentration of 322.
View Article and Find Full Text PDFChem Asian J
January 2025
University of Shanghai for Science and Technology, School of Materials and Chemistry, Shanghai, CHINA.
Ln-MOFs, composed of lanthanide ions and functional organic ligands, are porous materials with tunable structures and unique luminescent properties. However, the interplay between ligand AIE properties and the framework's "antenna effect" on MOF morphology is understudied. Here, Tb-D-Cam-TPTB was synthesized via solvothermal method using TPTB (persulfurated arene) as the primary ligand, D-Cam as the auxiliary ligand, and Tb3+ as the metal ion.
View Article and Find Full Text PDFTalanta
December 2024
The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523700, China. Electronic address:
This research presents a systematic review of the application of metal-organic frameworks (MOFs) to detect volatile organic compounds (VOCs). VOCs, compounds with high vapor pressure at ambient temperature and normal pressure, are widely present in a variety of industrial and living environments. VOCs are not only hazardous to the environment but also have a severe impact on human health.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sports Complex, P.O. Box 14665, 1998 Tehran, Iran.
Herein, a novel nanocomposite was developed to adjust the textural properties of metal-organic frameworks (MOFs) for adsorptive applications. To this end, nitrogen-doped carbon quantum dots/reduced graphene oxide nanocomposite (RC) was embedded into MIL-101(Cr) crystals, named RC-ML-x nanocomposites. The prepared nanoadsorbents were thoroughly characterized by different techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!