Copper oxychloride gained great importance due to its broad-spectrum antifungal action to combat various fungal diseases of plants. However, excess quantity of cupric fungicides on plants causes enzymatic changes and toxic effects. Thus, the current study was aimed to investigate the cytotoxicity and genotoxicity of copper oxychloride on Allium cepa root cells. The root growth, mitotic index (MI), chromosomal aberrations (CAs), and DNA damage were assessed through root growth inhibition, A. cepa ana-telophase, and alkaline comet assays. Furthermore, molecular docking was performed to evaluate binding affinities of two copper oxychloride polymorphs (atacamite and paratacamite) on DNA. In root growth inhibition test, onion root length was statistically significantly decreased by changing the copper oxychloride concentration from lower (2.64±0.11 cm) to higher (0.92±0.12 cm). Concentration- and time-dependent decrease in MI was observed whereas increase in CAs such as disturbed ana-telophase, chromosome laggards, stickiness, anaphase bridges, and DNA damage were caused by the copper oxychloride on A. cepa root cells. Molecular docking results revealed that the two main polymorphs of copper oxychloride (atacamite and paratacamite) bind selectively to G and C nucleotides on the B-DNA structure. It is concluded that the atacamite- and paratacamite-induced DNA damage may be through minor groove recognition and intercalation. Findings of the current study revealed the cytotoxic and genotoxic effects of copper oxychloride on A. cepa root cells. However, further studies should be carried out at the molecular level to reveal the cyto-genotoxic mechanism of action of copper oxychloride in detail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-13897-4 | DOI Listing |
Chemosphere
November 2024
Department of Ecoscience, Aarhus University, C.F. Møllers Alle 4, DK-8000, Aarhus, Denmark.
Nanopesticides (Npes) offer improved efficacy compared to their conventional forms while reducing the usage/application rates, hence being more sustainable options. However, there is still a knowledge gap on the Npes environmental impacts. To support the safety of nano-enabled pesticides, the present study aimed at assessing the toxicity of the commercial Npe NUCOP-M and the active substance copper oxychloride, using the ecotoxicological soil model Enchytraeus crypticus and LUFA 2.
View Article and Find Full Text PDFFront Plant Sci
October 2024
Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand.
A significant global problem affecting muskmelon ( L.) is fruit rot caused by phytopathogenic fungi, which results in unsaleable products and substantial financial losses. In 2022 and 2023, fruit rot on muskmelon was found during the postharvest storage period in Phayao Province of northern Thailand.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2024
Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa.
This study evaluated the ecotoxicity of metal-based fungicides under the current scenarios of global climatic change (20 °C and 25 °C) and moisture content (30% and 50%) in single and binary mixtures of copper oxychloride (CuOx) [200, 500 and 1000 mg/kg] and mancozeb (MnZn) [44, 850 and 1250 mg/kg]. Endpoints assessed included mortality, changes in biomass, avoidance behaviour, and reproduction utilising standardised protocols (ISO and OECD). The changes in biomass and mortality tests lasted 28 days, followed by a 28-day reproduction test and a two-day avoidance test.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India.
This study examines the potential of iron nanoparticle-coated copper oxychloride in mitigating its toxic effects on earthworms, a key component of sustainable agriculture due to their role in enhancing soil quality and promoting plant growth. While earthworms and their coelomic fluid play a crucial role in enhancing soil health and promoting plant growth. Copper oxychloride, a commonly used fungicide, induces oxidative stress by disrupting antioxidant defense mechanisms in living systems.
View Article and Find Full Text PDFInt J Microbiol
July 2024
Department of General and Applied Biology Sao Paulo State University (UNESP), Avenida 24-A 1515 Postal Code: 13506-900, Rio Claro, SP, Brazil.
The fungus is a quarantine phytopathogen responsible for causing citrus black spot (CBS) disease. To export fruits to CBS-free countries, they must undergo a sanitation process to ensure disease control. In this study, neem essential oil (NEO) was tested against for the first time as an alternative sanitizer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!