A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

AFI-Net: Attention-Guided Feature Integration Network for RGBD Saliency Detection. | LitMetric

This article proposes an innovative RGBD saliency model, that is, attention-guided feature integration network, which can extract and fuse features and perform saliency inference. Specifically, the model first extracts multimodal and level deep features. Then, a series of attention modules are deployed to the multilevel RGB and depth features, yielding enhanced deep features. Next, the enhanced multimodal deep features are hierarchically fused. Lastly, the RGB and depth boundary features, that is, low-level spatial details, are added to the integrated feature to perform saliency inference. The key points of the AFI-Net are the attention-guided feature enhancement and the boundary-aware saliency inference, where the attention module indicates salient objects coarsely, and the boundary information is used to equip the deep feature with more spatial details. Therefore, salient objects are well characterized, that is, well highlighted. The comprehensive experiments on five challenging public RGBD datasets clearly exhibit the superiority and effectiveness of the proposed AFI-Net.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026315PMC
http://dx.doi.org/10.1155/2021/8861446DOI Listing

Publication Analysis

Top Keywords

saliency inference
12
deep features
12
feature integration
8
integration network
8
rgbd saliency
8
attention-guided feature
8
perform saliency
8
rgb depth
8
spatial details
8
salient objects
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!