L. produces a wide range of valuable secondary metabolites. The aim of the present study is to determine the effects of various concentrations of farnesyl diphosphate (FDP) on β-caryophyllene content in both callus and hairy root (HR) cultures regeneration from leaf explants of L. Murashige and Skoog (MS) medium supplemented with various concentrations of 2,4-dichlorophenoxyacetic acid (2,4D; 4-13 μM), α-naphthaleneacetic acid (NAA; 5-16 μM), and FDP (1 and 3 μM) was used for callus induction and HR regeneration from leaf explants of L. In this study, precursor-treated (2,4D 13.5 μM + FDP 3 μM) callus displayed the highest biomass fresh weight (FW)/dry weight (DW): 46/25 g, followed by NAA 10.7 μM + FDP 3 μM with FW/DW: 50/28 g. Two different strains (A and R) were evaluated for HR induction. The biomass of HRs induced using half-strength MS + B vitamins with 3 μM FDP was FW/DW: 40/20 g and FW/DW: 41/19 g, respectively. To determine β-caryophyllene accumulation, we have isolated the essential oil from FDP-treated calli and HRs and quantified β-caryophyllene using gas chromatography-mass spectrometry (GC-MS). The highest production of β-caryophyllene was noticed in HR cultures induced using A and R strains on half-strength MS medium containing 3 μM FDP, which produced 2.92 and 2.80 mg/ml β-caryophyllene, respectively. The optimized protocol can be used commercially by scaling up the production of a β-caryophyllene compound in a short span of time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042329PMC
http://dx.doi.org/10.3389/fpls.2021.634178DOI Listing

Publication Analysis

Top Keywords

μm fdp
20
production β-caryophyllene
12
fdp μm
12
μm
9
farnesyl diphosphate
8
callus hairy
8
hairy root
8
root cultures
8
regeneration leaf
8
leaf explants
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!