Single-photon avalanche diode (SPAD) imagers can perform fast time-resolved imaging in a compact form factor, by exploiting the processing capability and speed of integrated CMOS electronics. Developments in SPAD imagers have recently made them compatible with widefield microscopy, thanks to array formats approaching one megapixel and sensitivity and noise levels approaching those of established technologies. In this paper, phasor-based FLIM is demonstrated with a gated binary 512×512 SPAD imager, which can operate with a gate length as short as 5.75 ns, a minimum gate step of 17.9 ps, and up to 98 kfps readout rate (1-bit frames). Lifetimes of ATTO 550 and Rhodamine 6G (R6G) solutions were measured across a 472×256 sub-array using phasor analysis, acquiring data by shifting a 13.1 ns gate window across the 50 ns laser period. The measurement accuracy obtained when employing such a scheme based on long, overlapping gates was validated by comparison with TCSPC measurements and fitting analysis results based on a standard Levenberg-Marquardt algorithm (>90% accuracy for the lifetime of R6G and ATTO 550). This demonstrates the ability of the proposed method to measure short lifetimes without minimum gate length requirements. The FLIM frame rate of the overall system can be increased up to a few fps for phasor-based widefield FLIM (moving closer to real-time operation) by FPGA-based parallel computation with continuous acquisition at the full speed of 98 kfps.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046026PMC
http://dx.doi.org/10.1117/12.2511148DOI Listing

Publication Analysis

Top Keywords

phasor-based widefield
8
widefield flim
8
spad imager
8
spad imagers
8
gate length
8
minimum gate
8
atto 550
8
flim
4
flim gated
4
gated 512×512
4

Similar Publications

The near-infrared (NIR) range of the electromagnetic (EM) spectrum offers a nearly transparent window for imaging tissue. Despite the significant potential of NIR fluorescence-based imaging, its establishment in basic research and clinical applications remains limited due to the scarcity of fluorescent molecules with absorption and emission properties in the NIR region, especially those suitable for biological applications. In this study, we present a novel approach by combining the widely used IRdye 800NHS fluorophore with gold nanospheres (GNSs) and gold nanorods (GNRs) to create Au nanodyes, with improved quantum yield (QY) and distinct lifetimes.

View Article and Find Full Text PDF

Wide-field time-gated SPAD imager for phasor-based FLIM applications.

Methods Appl Fluoresc

February 2020

Department of Chemistry & Biochemistry, University of California at Los Angeles (UCLA), Los Angeles, California, United States of America.

We describe the performance of a new wide area time-gated single-photon avalanche diode (SPAD) array for phasor-FLIM, exploring the effect of gate length, gate number and signal intensity on the measured lifetime accuracy and precision. We conclude that the detector functions essentially as an ideal shot noise limited sensor and is capable of video rate FLIM measurement. The phasor approach used in this work appears ideally suited to handle the large amount of data generated by this type of very large sensor (512 × 512 pixels), even in the case of small number of gates and limited photon budget.

View Article and Find Full Text PDF

Single-photon avalanche diode (SPAD) imagers can perform fast time-resolved imaging in a compact form factor, by exploiting the processing capability and speed of integrated CMOS electronics. Developments in SPAD imagers have recently made them compatible with widefield microscopy, thanks to array formats approaching one megapixel and sensitivity and noise levels approaching those of established technologies. In this paper, phasor-based FLIM is demonstrated with a gated binary 512×512 SPAD imager, which can operate with a gate length as short as 5.

View Article and Find Full Text PDF

Phasor-based single-molecule fluorescence lifetime imaging using a wide-field photon-counting detector.

Proc SPIE Int Soc Opt Eng

January 2009

Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA.

Fluorescence lifetime imaging (FLIM) is a powerful approach to studying the immediate environment of molecules. For example, it is used in biology to study changes in the chemical environment, or to study binding processes, aggregation, and conformational changes by measuring Förster resonance energy transfer (FRET) between donor and acceptor fluorophores. FLIM can be acquired by time-domain measurements (time-correlated single-photon counting) or frequency-domain measurements (with PMT modulation or digital frequency domain acquisition) in a confocal setup, or with wide-field systems (using time-gated cameras).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!