Deep learning methods have been shown to achieve excellent performance on diagnostic tasks, but how to optimally combine them with expert knowledge and existing clinical decision pathways is still an open challenge. This question is particularly important for the early detection of cancer, where high-volume workflows may benefit from (semi-)automated analysis. Here we present a deep learning framework to analyze samples of the Cytosponge-TFF3 test, a minimally invasive alternative to endoscopy, for detecting Barrett's esophagus, which is the main precursor of esophageal adenocarcinoma. We trained and independently validated the framework on data from two clinical trials, analyzing a combined total of 4,662 pathology slides from 2,331 patients. Our approach exploits decision patterns of gastrointestinal pathologists to define eight triage classes of varying priority for manual expert review. By substituting manual review with automated review in low-priority classes, we can reduce pathologist workload by 57% while matching the diagnostic performance of experienced pathologists.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-021-01287-9DOI Listing

Publication Analysis

Top Keywords

deep learning
12
barrett's esophagus
8
early detection
8
esophageal adenocarcinoma
8
triage-driven diagnosis
4
diagnosis barrett's
4
esophagus early
4
detection esophageal
4
adenocarcinoma deep
4
learning deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!