Chemical vapor deposition is a promising technique to produce MoC crystals with large area, controlled thickness, and reduced defect density. Typically, liquid Cu is used as a catalyst substrate; however, its high melting temperature (1085 °C) prompted research groups to search for alternatives. In this study, we report the synthesis of large-area thin MoC crystals at lower temperatures using liquid In, which is also advantageous with respect to the transfer process due to its facile etching. SEM, EDS, Raman spectroscopy, XPS, and XRD studies show that hexagonal MoC crystals, which are orthorhombic, grow along the [100] direction together with an amorphous carbon thin film on In. The growth mechanism is examined and discussed in detail, and a model is proposed. AFM studies agree well with the proposed model, showing that the vertical thickness of the MoC crystals decreases inversely with the thickness of In for a given reaction time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8050042 | PMC |
http://dx.doi.org/10.1038/s41598-021-87660-7 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India.
Chem Asian J
September 2024
School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, 700032, West Bengal, India.
Supramolecular gels are an important class of materials that are promising for its wide range of applications including drug delivery. While supramolecular gels are intrinsically porous because of the 3D nano-matrix (gel matrix) that is being formed due to supramolecular self-assembly process involving the gelator molecules during gelation, additional nanopores can be introduced to the overall gel if the gelator molecule itself holds molecular cavity such as metal-organic-cage (MOC) molecules. A MOC having the molecular formula [(PdL2).
View Article and Find Full Text PDFInorg Chem
June 2024
Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
Metal-organic cages (MOCs) with luminophores have significant advantages for the facile detection of specific molecules based on turn-on or turn-off luminescence changes induced by host-guest complexation. One important challenge is the development of turn-on-type near-infrared (NIR)-luminescent MOCs. In this study, we synthesized a novel MOC consisting of two porphyrin dyes linked by four Yb(III) complexes, which exhibit bimodal red and NIR fluorescence signals upon photoexcitation of the porphyrin π system.
View Article and Find Full Text PDFMater Horiz
July 2024
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
The synthesis of phase-pure carbide nanomaterials is crucial for understanding their structure-performance relationships, and for advancing their application in catalysis. Molybdenum carbides, in particular, have garnered increasing interest due to their Pt-like surface electronic properties and high catalytic activity. Traditional methods for synthesizing molybdenum carbide are often lengthy and energy-intensive, leading to an uncontrolled phase, low purity, and excessive carbon coverage, which hinder their catalytic performance improvement.
View Article and Find Full Text PDFAdv Mater
June 2024
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!