Background: Federated learning is a decentralized approach to machine learning; it is a training strategy that overcomes medical data privacy regulations and generalizes deep learning algorithms. Federated learning mitigates many systemic privacy risks by sharing only the model and parameters for training, without the need to export existing medical data sets. In this study, we performed ultrasound image analysis using federated learning to predict whether thyroid nodules were benign or malignant.

Objective: The goal of this study was to evaluate whether the performance of federated learning was comparable with that of conventional deep learning.

Methods: A total of 8457 (5375 malignant, 3082 benign) ultrasound images were collected from 6 institutions and used for federated learning and conventional deep learning. Five deep learning networks (VGG19, ResNet50, ResNext50, SE-ResNet50, and SE-ResNext50) were used. Using stratified random sampling, we selected 20% (1075 malignant, 616 benign) of the total images for internal validation. For external validation, we used 100 ultrasound images (50 malignant, 50 benign) from another institution.

Results: For internal validation, the area under the receiver operating characteristic (AUROC) curve for federated learning was between 78.88% and 87.56%, and the AUROC for conventional deep learning was between 82.61% and 91.57%. For external validation, the AUROC for federated learning was between 75.20% and 86.72%, and the AUROC curve for conventional deep learning was between 73.04% and 91.04%.

Conclusions: We demonstrated that the performance of federated learning using decentralized data was comparable to that of conventional deep learning using pooled data. Federated learning might be potentially useful for analyzing medical images while protecting patients' personal information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170555PMC
http://dx.doi.org/10.2196/25869DOI Listing

Publication Analysis

Top Keywords

federated learning
40
deep learning
24
conventional deep
20
learning
16
federated
10
ultrasound image
8
image analysis
8
learning decentralized
8
medical data
8
performance federated
8

Similar Publications

Background: Population aging and the increase in memory-related diseases have motivated the search for accessible cognitive screening instruments. To develop a digital memory and learning test (DMLT) based on Rey's Auditory Verbal Learning Test (RAVLT) principles to assess cognition in the elderly and identify early cognitive decline.

Methods: The research was divided into two phases: developing the digital test and the experimental phase of comparison with a reference test.

View Article and Find Full Text PDF

Purpose Of Review: This review aims to evaluate the impact of artificial intelligence (AI) on cancer health equity, specifically investigating whether AI is addressing or widening disparities in cancer outcomes.

Recent Findings: Recent studies demonstrate significant advancements in AI, such as deep learning for cancer diagnosis and predictive analytics for personalized treatment, showing potential for improved precision in care. However, concerns persist about the performance of AI tools across diverse populations due to biased training data.

View Article and Find Full Text PDF

Molecular subtypes, such as defined by The Cancer Genome Atlas (TCGA), delineate a cancer's underlying biology, bringing hope to inform a patient's prognosis and treatment plan. However, most approaches used in the discovery of subtypes are not suitable for assigning subtype labels to new cancer specimens from other studies or clinical trials. Here, we address this barrier by applying five different machine learning approaches to multi-omic data from 8,791 TCGA tumor samples comprising 106 subtypes from 26 different cancer cohorts to build models based upon small numbers of features that can classify new samples into previously defined TCGA molecular subtypes-a step toward molecular subtype application in the clinic.

View Article and Find Full Text PDF

BioBERT based text mining for incorporating prior knowledge in the inference of genetic network models.

Comput Biol Med

January 2025

Health Innovation and Transformation Centre, Federation University, Victoria, 3842, Australia; BioThink, Queensland, 4020, Australia.

Reconstruction of Gene Regulatory Networks (GRNs) is essential for understanding gene interactions, their impact on cellular processes, and manifestation of diseases, including drug discovery. Among various mathematical and dynamic models used for GRN reconstruction, S-system model, comprising non-linear differential equations, is widely utilised to capture the behaviour of complex biological systems with non-linear and time-dependent interactions. However, as the network size increases, computational demand for network inference grows due to a greater number of estimation parameters, significantly impacting the performance of optimisation algorithms.

View Article and Find Full Text PDF

This study aimed to investigate the impact of different offensive-reward-related rules on the physical performance, perceived exertion and enjoyment of young basketball players during small-sided games (SSG). Eighteen youth male players (age: 13.3±0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!