Immunological adjuvants are an important part of tumor vaccines and are critical for stimulating anti-tumor immune responses. However, the clinical needs of strong adjuvants have not been met. In this work, we found that the purified acidic polysaccharide from Sarcandra glabra, named p-SGP, is an ideal adjuvant for tumor vaccines. Cancer vaccines could induce stronger humoral and cellular immune responses when they are adjuvanted with p-SGP. Compared with CpG, a well-studied adjuvant, p-SGP significantly augmented the anti-tumor immunity of various cancer vaccines, which is leading to noticeable inhibition of tumor growth and metastasis in tumor-bearing mice. Moreover, p-SGP promoted dendritic cells (DCs) maturation and Th1-polarized immune response. Toll-like receptor 4 (TLR4) inhibitor TAK-242 could significantly inhibit the expression of mature molecules on the surface of DCs stimulated by p-SGP, suggesting that p-SGP could play the role of activating DCs through the TLR4 receptor. Results of RNA-seq showed that the Delta-like ligand 4 (DLL4) gene in the pathway Th1 and Th2 cell differentiation was significantly up-regulated in the DCs treated with p-SGP, suggesting that p-SGP has a unique mechanism of enhancing anti-tumor immunity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2021.117967 | DOI Listing |
PeerJ
January 2025
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
Background: Geraniol 10-hydroxylase (G10H) is a cytochrome P450 monooxygenase involved in regulation, which is involved in the biosynthesis of monoterpene. However, G10H is not characterized at the enzymatic mechanism and regulatory function in .
Methods And Results: A gene related to the biosynthesis of monoterpenoid, geraniol 10-hydroxylase, has been cloned from the medicinal plant .
ACS Chem Biol
January 2025
Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan.
Developing novel nonribosomal peptides (NRPs) requires a comprehensive understanding of the enzymes involved in their biosynthesis, particularly the substrate amino acid recognition mechanisms in the adenylation (A) domain. This study focused on the A domain responsible for adenylating l-2,4-diaminobutyric acid (l-Dab) within the synthetase of polymyxin, an NRP produced by NBRC3020. To date, investigations into recombinant proteins that selectively adenylate l-Dab─exploring substrate specificity and enzymatic activity parameters─have been limited to reports on A domains found in enzymes synthesizing l-Dab homopolymers (pldA from USE31 and pddA from NBRC15115), which remain exceedingly rare.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Technology and Engineering, MPUAT, Udaipur, Rajasthan-313001, India. Electronic address:
Lipases, enzymes that perform the hydrolysis of triglycerides into fatty acids and glycerol, present a potential paradigm shift in the realms of food and detergent industries. Their enhanced efficiency, energy conservation and environmentally friendly attributes make them promising substitutes for chemical catalysts. Motivated by this prospect, this present study was targeted on the heterologous expression of a lipase gene, employing E.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil; Institute of Bioenergy Research (IPBEN), Jaboticabal, São Paulo, Brazil. Electronic address:
This study characterized a novel bacterial lipase with high biotechnological potential, focusing on industrial and environmental applications. Bacterial isolates were screened using olive oil as a substrate, and the strain with the highest hydrolytic halo was identified as Burkholderia sp. via 16S rRNA analysis.
View Article and Find Full Text PDFRSC Chem Biol
January 2025
Department of Chemical and Biological Engineering, University of Wisconsin - Madison Madison Wisconsin 53706 USA
Cyanobacteria are widespread, photosynthetic, gram-negative bacteria that generate numerous bioactive secondary metabolites complex biosynthetic enzymatic machinery. The model cyanobacterium sp. strain PCC 7002, hereafter referred to as PCC 7002, contains a type I polyketide synthase (PKS), termed olefin synthase (OlsWT), that synthesizes 1-nonadecene and 1,14-nonadecadiene: α-olefins that are important for growth at low temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!