A hemizygous p.R204Q mutation in the ALAS2 gene underlies X-linked sideroblastic anemia in an adult Chinese Han man.

BMC Med Genomics

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China.

Published: April 2021

Background: X-linked sideroblastic anemia (XLSA) is the most common form of congenital sideroblastic anemia (CSA), and is associated with the mutations in the 5-aminolevulinate synthase 2 (ALAS2). The genetic basis of more than 40% of CSA cases remains unknown.

Methods: A two-generation Chinese family with XLSA was studied by next-generation sequencing to identify the underlying CSA-related mutations.

Results: In the study, we identified a missense ALAS2 R204Q mutation in a hemizygous Chinese Han man and in his heterozygous daughter. The male proband presented clinical manifestations at 38 years old and had a good response to pyridoxine.

Conclusions: XLSA, as a hereditary disease, can present clinical manifestations later in lives, for adult male patients with ringed sideroblasts and hypochromic anemia, it should be evaluated with gene analyses to exclude CSA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048311PMC
http://dx.doi.org/10.1186/s12920-021-00950-xDOI Listing

Publication Analysis

Top Keywords

sideroblastic anemia
12
x-linked sideroblastic
8
chinese han
8
han man
8
clinical manifestations
8
hemizygous pr204q
4
pr204q mutation
4
mutation alas2
4
alas2 gene
4
gene underlies
4

Similar Publications

Many essential proteins require pyridoxal 5'-phosphate, the active form of vitamin B6, as a cofactor for their activity. These include enzymes important for amino acid metabolism, one-carbon metabolism, polyamine synthesis, erythropoiesis, and neurotransmitter metabolism. A third of all mammalian pyridoxal 5'-phosphate-dependent enzymes are localized in the mitochondria; however, the molecular machinery involved in the regulation of mitochondrial pyridoxal 5'-phosphate levels in mammals remains unknown.

View Article and Find Full Text PDF

Mutations in the SLC25A38 gene are responsible for the second most common form of congenital sideroblastic anemia (CSA), a severe condition for which no effective treatment exists. We developed and characterized a K562 erythroleukemia cell line with markedly reduced expression of the SLC25A38 protein (A38-low cells). This model successfully recapitulated the main features of CSA, including reduced heme content and mitochondrial respiration, increase in mitochondrial iron, ROS levels and sensitivity to oxidative stress.

View Article and Find Full Text PDF

X-linked sideroblastic anemia (XLSA) is a congenital anemia caused by mutations in ALAS2, a gene responsible for heme synthesis. Treatments are limited to pyridoxine supplements and blood transfusions, offering no definitive cure except for allogeneic hematopoietic stem cell transplantation, only accessible to a subset of patients. The absence of a suitable animal model has hindered the development of gene therapy research for this disease.

View Article and Find Full Text PDF

Besides transfusion therapy, ineffective erythropoiesis contributes to systemic iron overload in myelodysplastic syndromes with ring sideroblasts (MDS-RS) via erythroferrone-induced suppression of hepcidin synthesis in the liver, leading to increased intestinal iron absorption. The underlying pathophysiology of MDS-RS, characterized by disturbed heme synthesis and mitochondrial iron accumulation, is less well understood. Several lines of evidence indicate that the mitochondrial transporter ABCB7 is critically involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!