Background: Identifying the causes of community-acquired pneumonia (CAP) is challenging due to the disease's complex etiology and the limitations of traditional microbiological diagnostic methods. Recent advances in next generation sequencing (NGS)-based metagenomics allow pan-pathogen detection in a single assay, and may have significant advantages over culture-based techniques.
Results: We conducted a cohort study of 159 CAP patients to assess the diagnostic performance of a clinical metagenomics assay and its impact on clinical management and patient outcomes. When compared to other techniques, clinical metagenomics detected more pathogens in more CAP cases, and identified a substantial number of polymicrobial infections. Moreover, metagenomics results led to changes in or confirmation of clinical management in 35 of 59 cases; these 35 cases also had significantly improved patient outcomes.
Conclusions: Clinical metagenomics could be a valuable tool for the diagnosis and treatment of CAP.
Trial Registration: Trial registration number with the Chinese Clinical Trial Registry: ChiCTR2100043628 .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047593 | PMC |
http://dx.doi.org/10.1186/s12879-021-06039-1 | DOI Listing |
Water Res
January 2025
Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 565-0871, Japan. Electronic address:
Treated effluent of wastewater treatment plants (WWTPs) are major sources of extracellular antimicrobial resistance genes (eARGs) into aquatic environments. This study aimed to clarify the fate and origins of eARGs from influent to treated effluent at a full-scale WWTP. The compositions of eARG and intracellular ARG (iARG) were acquired via shotgun metagenomic sequencing in influent wastewater, activated sludge, and treated effluent of the target WWTP, where identical wastewater was treated by conventional activated sludge (CAS) and membrane bioreactor (MBR) processes.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Division of Infectious Disease, Department of Medicine, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA.
Fungal infections are common in highly immunosuppressed, solid organ transplant recipients. They can be quite difficult to diagnose in a timely manner; thus, we present a review of current studies focusing on broad categories of molecular diagnostics, i.e.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
Background: Periodontitis is not always satisfactorily treated with conventional scaling and root planing, and adjunctive use of antibiotics is required in clinical practice. Therefore, it is important for clinicians to understand the diversity and the antibiotic resistance of subgingival microbiota when exposed to different antibiotics.
Materials And Methods: In this study, subgingival plaques were collected from 10 periodontitis patients and 11 periodontally healthy volunteers, and their microbiota response to selective pressure of four antibiotics (amoxicillin, metronidazole, clindamycin, and tetracycline) were evaluated through 16S rRNA gene amplicon and metagenomic sequencing analysis.
Pediatr Rheumatol Online J
January 2025
Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Background: An accurate diagnosis of septic versus reactive or autoimmune arthritis remains clinically challenging. A multi-omics strategy comprising metagenomic and proteomic technologies were undertaken for children diagnosed with presumed septic arthritis to advance clinical diagnoses and care for affected individuals.
Methods: Twelve children with suspected septic arthritis were prospectively enrolled to compare standard of care tests with a rapid multi-omics approach.
BMC Endocr Disord
January 2025
Burn and Wound Repair Department, Fujian Medical University Union Hospital, Fuzhou, China.
Background: Diabetic foot ulcers (DFUs) are characterized by dynamic wound microbiome, the timely and accurate identification of pathogens in the clinic is required to initiate precise and individualized treatment. Metagenomic next-generation sequencing (mNGS) has been a useful supplement to routine culture method for the etiological diagnosis of DFUs. In this study, we utilized a routine culture method and mNGS to analyze the same DFU wound samples and the results were compared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!