Crystallization kinetics of amorphous acetonitrile nanoscale films.

J Chem Phys

Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.

Published: April 2021

We measure the isothermal crystallization kinetics of amorphous acetonitrile films using molecular beam dosing and reflection adsorption infrared spectroscopy techniques. Experiments on a graphene covered Pt(111) substrate revealed that the crystallization rate slows dramatically during long time periods and that the overall kinetics cannot be described by a simple application of the Avrami equation. The crystallization kinetics also have a thickness dependence with the thinner films crystallizing much slower than the thicker ones. Additional experiments showed that decane layers at both the substrate and vacuum interfaces can also affect the crystallization rates. A comparison of the crystallization rates for CHCN and CDCN films showed only an isotope effect of ∼1.09. When amorphous films were deposited on a crystalline film, the crystalline layer did not act as a template for the formation of a crystalline growth front. These overall results suggest that the crystallization kinetics are complicated, indicating the possibility of multiple nucleation and growth mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0045461DOI Listing

Publication Analysis

Top Keywords

crystallization kinetics
16
kinetics amorphous
8
amorphous acetonitrile
8
crystallization rates
8
crystallization
7
films
5
acetonitrile nanoscale
4
nanoscale films
4
films measure
4
measure isothermal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!