We report on first applications of the Multi-Layer Gaussian-based Multi-Configuration Time-Dependent Hartree (ML-GMCTDH) method [Römer et al., J. Chem. Phys. 138, 064106 (2013)] beyond its basic two-layer variant. The ML-GMCTDH scheme provides an embedding of a variationally evolving Gaussian wavepacket basis into a hierarchical tensor representation of the wavefunction. A first-principles parameterized model Hamiltonian for ultrafast non-adiabatic dynamics in an oligothiophene-fullerene charge transfer complex is employed, relying on a two-state linear vibronic coupling model that combines a distribution of tuning type modes with an intermolecular coordinate that also modulates the electronic coupling. Efficient ML-GMCTDH simulations are carried out for up to 300 vibrational modes using an implementation within the QUANTICS program. Excellent agreement with reference ML-MCTDH calculations is obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0046933DOI Listing

Publication Analysis

Top Keywords

multi-layer gaussian-based
8
gaussian-based multi-configuration
8
multi-configuration time-dependent
8
time-dependent hartree
8
hartree ml-gmctdh
8
ml-gmctdh simulations
8
ml-gmctdh
4
simulations ultrafast
4
ultrafast charge
4
charge separation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!