Trace detection of fluoride ion has gained increasing attention due to fluoride's close association with biological and environmental processes. Herein, we construct a novel hybrid nanosystem consisting of carbon dots and curcumin for sensitive and selective sensing of F. Carbon dots are synthesized by hydrothermal treatment of 2,3-diaminopyridine and selenourea in hydrochloric acid. This material is employed as the fluorescent indicator that exhibits intense blue and yellow emission with quantum yields of 12% and 33%, respectively. Curcumin, possessing an absorption peak at 532 nm, can significantly quench the yellow fluorescence of carbon dots through inner filter effect. Curcumin is also used to specifically recognize F. When F is added, the curcumin-F complex generates, which leads to the hypochromatic shift of the absorption band from 532 to 430 nm. In such a case, the inner filter effect reduces, and yellow fluorescence of carbon dots recovers. Thus, a fluorescence turn-on sensor of F is built based on the carbon dots/curcumin system. The limits of detection and quantitation are measured to be 0.39 and 1.30 μM, respectively. For real usage, the proposed method is applied to determinate F in tap water and milk samples with relative standard deviations below 7.9%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.125184 | DOI Listing |
Food Chem
December 2024
Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:
Food allergy is increasingly prevalent and poses notable health risks, which underscores the urgent need to develop reliable and sensitive detection methods for effective identification of food allergens. This study aims to address the limitations of existing methods by developing an immunoassay utilizing bacteriophage/carbon dots (CDs)@silica core-shell nanospheres. Two CDs with different emission wavelengths (513 nm for Green CDs, 645 nm for Red CDs) were synthesized for signal development and amplification.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemical Engineering, RVR & JC College of Engineering (A), Guntur, Andhra Pradesh, 522019, India.
The study analyzed the aqueous leaf extracts of Moringa oleifera and Musa sps. for phytochemical components, including flavonoids, sterols, saponins, tannins, and glycosides. The LC-MS analysis revealed gingerol, vicenin-2, caffeic acid, quercetin, and other compounds in the extracts.
View Article and Find Full Text PDFMikrochim Acta
December 2024
School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
A novel carbon-based light-addressable potentiometric aptasensor (C-LAPS) was constructed for detection low-density lipoprotein (LDL) in serum. Carboxylated TiC MXene @reduced graphene oxide (C-MXene@rGO) was used as interface and o-phenylenediamine functionalized nitrogen-doped graphene quantum dots (OPD@NGQDs) as the photoelectric conversion element. The photosensitive layers composed of OPD@NGQDs/C-MXene@rGO exhibit superior photoelectric conversion efficiency and excellent biocompatibility, which contribute to an improved response signal.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
A novel copper and iron doped containing chitosan and heparin sodium carbon dots (CS-Cu,Fe/HS) nanozyme was formulated through a single-step microwave digestion method. CS-Cu,Fe/HS exhibits excellent peroxidase (POD)-like activity and positive charge characteristics, and it can oxidize the negatively charged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the presence of HO to produce a green compound (ox-ABTS). Furthermore, CS-Cu,Fe/HS enhances electron transfer and provides additional active sites through the valence state transformations of Fe/Fe and Cu/Cu.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
Accurate and selective monitoring of thiamine levels in multivitamin supplements is essential for preventing deficiencies and ensuring product quality. To achieve this, a Förster resonance energy transfer (FRET) system using carbon dots (CDs) as energy donors and citrate-stabilized silver nanoparticles (AgNPs) as energy acceptors was developed. The aqueous synthesis of AgNPs using microwave irradiation was optimized to obtain efficient plasmonic nanoparticles for FRET applications, targeting maximal absorbance intensity, stability, and wavelength alignment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!