A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transcriptomic analysis reveals the parallel transcriptional regulation of UV-B-induced artemisinin and flavonoid accumulation in Artemisia annua L. | LitMetric

Transcriptomic analysis reveals the parallel transcriptional regulation of UV-B-induced artemisinin and flavonoid accumulation in Artemisia annua L.

Plant Physiol Biochem

Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China. Electronic address:

Published: June 2021

UV-B radiation is a pivotal photomorphogenic signal and positively regulates plant growth and metabolite biosynthesis. In order to elucidate the transcriptional regulation mechanism underlying UV-B-induced artemisinin and flavonoid biosynthesis in Artemisia annua, the transcriptional responses of A. annua L. leaves to UV-B radiation were analyzed using the Illumina transcriptome sequencing. A total of 10705 differentially expressed genes (DEGs) including 533 transcription factors (TFs), were identified. Based on the expression trends of the differentially expressed TFs as well as artemisinin and flavonoid biosynthesis genes, we speculated that TFs belonging to 6 clusters were most likely to be involved in the regulation of artemisinin and/or flavonoid biosynthesis. The regulatory relationship between TFs and artemisinin/flavonoid biosynthetic genes was further studied. Dual-LUC assays results showed that AaMYB6 is a positive regulator of AaLDOX which belongs to flavonoid biosynthesis pathway. In addition, we identified an R2R3 MYB TF, AaMYB4 which potentially mediated both artemisinin and flavonoid biosynthesis pathways by activating the expression of AaADS and AaDBR2 in artemisinin biosynthesis pathway and AaUFGT in flavonoid biosynthesis pathway. Overall, our findings would provide an insight into the elucidation of the parallel transcriptional regulation of artemisinin and flavonoid biosynthesis in A. annua L. under UV-B radiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2021.03.052DOI Listing

Publication Analysis

Top Keywords

flavonoid biosynthesis
28
artemisinin flavonoid
20
transcriptional regulation
12
uv-b radiation
12
biosynthesis pathway
12
biosynthesis
9
parallel transcriptional
8
uv-b-induced artemisinin
8
flavonoid
8
artemisia annua
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!