Background: Selenium has a major role in male reproduction and antioxidative mechanisms. Although deficiency of this element can result in damages to the body's organs, this metalloid can induce deleterious effects in organisms by causing oxidative stress. This study assessed the spermatotoxicity of selenium nanoparticles (SeNPs) in goldfish (Carassius auratus) based on genotoxicity, antioxidant status, sperm quality, and histopathology.
Methods: The fish with an average weight of 70 g (n = 288) were divided into four experimental groups (three replicates) and fed three times a day with SeNPs at different levels of 0, 0.1, 0.5, and 1 mg kg diet for 30 and 60 days.
Results: After 30 and 60 days of feeding trial, compared to the control group, spermatocrit percentage markedly decreased at 1 mg kg SeNPs on day 30 as well as at 0.5 and 1 mg kg on day 60 (p < 0.05). Computer-assisted sperm analysis parameters especially VCL, VSL, and VAP decreased in response to SeNPs (p < 0.05). Percentage of fast speed progressive sperm cells was highest in fish fed with 0.1 mg kg SeNPs following the dietary experiment and significantly reduced in a SeNPs dose-dependent manner (p < 0.05). In addition, the levels of Malondialdehyde and Glutathione peroxidase were significantly elevated in seminal plasma of all SeNPs-treated groups (p < 0.05). On day 60, DNA damage of sperm was greatly increased at 1 mg kg SeNPs (p < 0.05). Moreover, the highest percentage of spermatocyte and spermatid were observed at the highest dose of SeNPs while the highest percentage of spermatozoa was recorded at the lowest and moderate SeNPs doses.
Conclusion: These findings suggested that non-optimal doses of SeNPs could reduce sperm quality, induce oxidative stress, and DNA damage in sperm, and disrupt testis development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtemb.2021.126758 | DOI Listing |
Ultrastruct Pathol
January 2025
Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
There is an important concern about the potential health and environmental risks that may develop due to exposure to copper oxide nanoparticles (CuO-NPs). Selenium is an essential trace element. It supports the expression of a variety of selenoproteins.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India.
Plant Physiol Biochem
January 2025
Department of Botany, Cotton University, Guwahati, 781001, Assam, India. Electronic address:
Selenium nanoparticles are well known for their antioxidant and stress-mitigating properties. In our study, composite nanoformulations of selenium and chitosan have been synthesized. The synthesized composite nanoformulations were 50 nm in diameter, spherical in shape, and had higher antioxidant activities and stability than the selenium and chitosan nanoparticles.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
Background: The in vitro propagation of halophytes is innovative perspective for sustainable agriculture, conservation of natural plants and essential raw materials for industry due to increasing soil salinization and decreasing freshwater availability. Sarcocornia fruticosa, a halophytic plant, may hold promise for biosaline production systems and achieve bioactive products. Understanding the salt tolerance mechanisms of halophytes through elicitors can enhance the production of secondary metabolites, such as phenolics and flavonoids, under saline environment.
View Article and Find Full Text PDFFood Chem
January 2025
Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China. Electronic address:
Multifunctional pH-responsive films were fabricated via layer-by-layer deposition of gelatin, chitosan, and carboxymethyl cellulose (CMC), incorporating selenium nanoparticles (SeNPs) and beetroot extract (BTE), to monitor and preserve beef freshness. SeNPs were synthesized and characterized via various techniques. BTE exhibited promising functional properties, and films demonstrated a significant color transition from red to yellow across pH 2-14.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!