Piperazine-2,5-dione derivatives and an α-pyrone polyketide from Penicillium griseofulvum and their immunosuppression activity.

Phytochemistry

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China. Electronic address:

Published: June 2021

Four undescribed piperazine-2,5-dione derivatives designated janthinolides C-F, and an α-pyrone-containing polyketide namely trichopyrone C, were isolated from the extract of the fungus Penicillium griseofulvum along with four known products. Among them, janthinolide C represents the first naturally occured piperazine-2,5-dione analogue featuring a cleavaged piperazinedione ring with an oxime group, while the structure of janthinolide D possesses a rare N-methoxy group in natural products. Their structures and absolute stereochemistry were elucidated based on spectroscopic data, theoretical NMR and ECD calculations, Snatzke's method, and modified Mosher's method. All compounds were evaluated for in vitro immunosuppression activity in murine splenocytes stimulated by anti-CD3/anti-CD28 mAbs, of which janthinolides B and C showed potential inhibitory activity with IC values at 9.3 and 1.3 μM, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2021.112708DOI Listing

Publication Analysis

Top Keywords

piperazine-25-dione derivatives
8
penicillium griseofulvum
8
immunosuppression activity
8
derivatives α-pyrone
4
α-pyrone polyketide
4
polyketide penicillium
4
griseofulvum immunosuppression
4
activity undescribed
4
undescribed piperazine-25-dione
4
derivatives designated
4

Similar Publications

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Comparative Study of Iminodibenzyl and Diphenylamine Derivatives as Hole Transport Materials in Inverted Perovskite Solar Cells.

Chemistry

January 2025

Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg, Department of Materials Science and Engineering, Institute of Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058, Erlangen, GERMANY.

Perovskite solar cells (PSCs) have recently achieved over 26% power conversion efficiency, challenging the dominance of silicon-based alternatives. This progress is significantly driven by innovations in hole transport materials (HTMs), which notably influence the efficiency and stability of PSCs. However, conventional organic HTMs like PTAA, although highly efficient, suffer from thermal degradation, moisture ingress, and high cost.

View Article and Find Full Text PDF

Studying the molecular basis of intestinal infections caused by enteric pathogens at the tissue level is challenging, because most human intestinal infection models have limitations, and results obtained from animals may not reflect the human situation. Infections with Salmonella enterica serovar Typhimurium (STm) have different outcomes between organisms. 3D tissue modeling of primary human material provides alternatives to animal experimentation, but epithelial co-culture with immune cells remains difficult.

View Article and Find Full Text PDF

The development of stable and tunable polycyclic aromatic compounds (PACs) is crucial for the advancement of organic optoelectronics. Conventional PACs, such as acenes, often suffer from poor stability due to photooxidation and oligomerization, which are linked to their frontier molecular orbital energy levels. To address these limitations, we designed and synthesized a new class of π-expanded indoloindolizines by merging indole and indolizine moieties into a single polycyclic framework.

View Article and Find Full Text PDF

Coral reefs are hotspots of marine biodiversity, which results in the synthesis of a wide variety of compounds with unique molecular scaffolds, and bioactivities, rendering reefs an ecosystem of interest. The chemodiversity stems from the intricate relationships between inhabitants of the reef, as the chemistry produced partakes in intra- and interspecies communication, settlement, nutrient acquisition, and defense. However, the coral reefs are declining at an unprecedented rate due to climate change, pollution, and increased incidence of pathogenic diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!