Multibeat echocardiographic phase detection using deep neural networks.

Comput Biol Med

School of Computing and Engineering, University of West London, London, United Kingdom; National Heart and Lung Institute, Imperial College, London, United Kingdom.

Published: June 2021

Background: Accurate identification of end-diastolic and end-systolic frames in echocardiographic cine loops is important, yet challenging, for human experts. Manual frame selection is subject to uncertainty, affecting crucial clinical measurements, such as myocardial strain. Therefore, the ability to automatically detect frames of interest is highly desirable.

Methods: We have developed deep neural networks, trained and tested on multi-centre patient data, for the accurate identification of end-diastolic and end-systolic frames in apical four-chamber 2D multibeat cine loop recordings of arbitrary length. Seven experienced cardiologist experts independently labelled the frames of interest, thereby providing infallible annotations, allowing for observer variability measurements.

Results: When compared with the ground-truth, our model shows an average frame difference of -0.09 ± 1.10 and 0.11 ± 1.29 frames for end-diastolic and end-systolic frames, respectively. When applied to patient datasets from a different clinical site, to which the model was blind during its development, average frame differences of -1.34 ± 3.27 and -0.31 ± 3.37 frames were obtained for both frames of interest. All detection errors fall within the range of inter-observer variability: [-0.87, -5.51]±[2.29, 4.26] and [-0.97, -3.46]±[3.67, 4.68] for ED and ES events, respectively.

Conclusions: The proposed automated model can identify multiple end-systolic and end-diastolic frames in echocardiographic videos of arbitrary length with performance indistinguishable from that of human experts, but with significantly shorter processing time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2021.104373DOI Listing

Publication Analysis

Top Keywords

end-diastolic end-systolic
12
end-systolic frames
12
frames interest
12
frames
9
deep neural
8
neural networks
8
accurate identification
8
identification end-diastolic
8
frames echocardiographic
8
human experts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!