A novel magnetic graphene oxide nanocomposite modified with polyaniline (FeO@GO-PANI) was synthesized and applied for the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons (PAHs) (i.e. fluorene, phenanthrene and pyrene) and nitrated polycyclic aromatic hydrocarbons (N-PAHs) (i.e. 2-nitrofluorene, 9-nitroanthracene, 1-nitropyrene and 3-nitrofluoranthene) prior to their determination by gas chromatography-mass spectrometry. The prepared nanomaterial was characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform-infrared spectroscopy. The main experimental parameters affecting the extraction and desorption steps of the MSPE procedure were investigated and optimized. Under optimum conditions, coefficients of determination (r) ranged between 0.9970 and 0.9995, limits of detection (LODs, S/N = 3) ranged between 0.04-0.05 ng mL for PAHs and 0.01-0.11 ng mL for N-PAHs, while the relative standard deviation for intra-day and inter-day repeatability were lower than 10.0% for PAHs and N-PAHs. The method was successfully applied to the analysis of tap, mineral and river water samples. Relative recoveries in spiked water samples ranged between from 91.6 to 114% and from 92.3 to 110% for PAHs and N-PAHs, respectively. The proposed method is simple, rapid, sensitive and the FeO@GO-PANI sorbent can be reused for at least 15 times without significant decrease in extraction recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2021.462104DOI Listing

Publication Analysis

Top Keywords

polycyclic aromatic
16
aromatic hydrocarbons
16
water samples
12
magnetic solid-phase
8
solid-phase extraction
8
extraction polycyclic
8
nitrated polycyclic
8
graphene oxide
8
oxide nanocomposite
8
pahs n-pahs
8

Similar Publications

Previous research indicates that the COVID-19 pandemic catalyzed alterations in behaviors that may impact exposures to environmental endocrine-disrupting chemicals. This includes changes in the use of chemicals found in consumer products, food packaging, and exposure to air pollutants. Within the Environmental influences on Child Health Outcomes (ECHO) program, a national consortium initiated to understand the effects of environmental exposures on child health and development, our objective was to assess whether urinary concentrations of a wide range of potential endocrine-disrupting chemicals varied before and during the pandemic.

View Article and Find Full Text PDF

Rates of respiratory tract infections for children living in remote First Nations communities in the Sioux Lookout Zone in Northwestern Ontario are elevated and associated with poor indoor environmental quality including high exposures to endotoxin and serious dampness and mould damage. The studies also revealed a high prevalence of cigarette smoking and most houses have wood stoves, of variable quality. Depending on structure, polycyclic aromatic hydrocarbons (PAH) are carcinogens, immunotoxins and/or inflammatory mediators that are byproducts of the incomplete combustion of organic materials.

View Article and Find Full Text PDF

Ocean oil spills can severely impact ecosystems and disrupt marine biodiversity and habitats. Microbial remediation is an effective method for removing thin oil slick contamination. In this study, the adsorption and degradation of low-concentration oil spills by Chlorella vulgaris LH-1 immobilized in konjac glucomannan (KGM) aerogel were investigated.

View Article and Find Full Text PDF

Mycoremediation is a biological treatment approach that relies on fungi to transform environmental pollutants into intermediates with lower environmental burden. Basidiomycetes have commonly been used as the target fungal phylum for bioaugmentation in mycoremediation, however this phylum has been found to be unreliable when used at scale in the field. In this study, we isolated, characterized, and identified potential polycyclic aromatic hydrocarbon (PAH) degrading fungal isolates from creosote-contaminated sediment in the Elizabeth River, Virginia.

View Article and Find Full Text PDF

Unlabelled: Gram-negative bacteria play a pivotal role in the bioremediation of persistent organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs). Because the outer membrane (OM) of these bacteria hinders the direct permeation of hydrophobic substances into the cells, trans-OM proteins are required for the uptake of PAHs. However, neither the characteristics of PAH transporters nor the specific transport mechanism has been well interpreted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!