Epithelial-to-mesenchymal transition (EMT) plays an important role in diabetic nephropathy (DN). Ubiquitin-specific protease 9X (USP9X/FAM) is closely linked to TGF-β and fibrosis signaling pathway. However, it remains unknown whether USP9X is involved in the process of EMT in DN. Our previous study has shown that connexin 43 (Cx43) activation attenuated the development of diabetic renal tubulointerstitial fibrosis (RIF). Here, we showed that USP9X is a novel negative regulator of EMT and the potential mechanism is related to the deubiquitination and degradation of Cx43. To explore the potential regulatory mechanism of USP9X, the expression and activity of USP9X were studied by CRISPR/Cas9-based synergistic activation mediator (SAM) system, short hairpin RNAs, and selective inhibitor. The following findings were observed: (1) Expression of USP9X was down-regulated in the kidney tissue of db/db diabetic mice; (2) overexpression of USP9X suppressed high glucose (HG)-induced expressions of EMT markers and extra cellular matrix (ECM) in NRK-52E cells; (3) depletion of USP9X further aggravated EMT process and ECM production in NRK-52E cells; (4) USP9X deubiquitinated Cx43 and suppressed its degradation to regulate EMT process; (5) USP9X deubiquitinated Cx43 by directly binding to the C-terminal Tyr of Cx43. The current study determined the protective role of USP9X in the process of EMT and the molecular mechanism clarified that the protective effects of USP9X on DN were associated with the deubiquitination of Cx43.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2021.114562 | DOI Listing |
Clin Exp Pharmacol Physiol
February 2025
Department of Thoracic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.
Myasthenia gravis (MG) presents with symptoms that significantly affect patients' daily lives. Long-term MG therapies may lead to substantial side effects, predominantly due to prolonged immune suppression. Sirt6, which plays a vital role in maintaining cellular homeostasis and is recognised for its involvement in cytokine production in immune cells, has not yet been explored in relation to MG.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China.
Background: The Prickle2 (Pk2) gene shows promising potential in uncovering the underlying causes of epilepsy, a neurological disorder that is currently not well understood. This paper utilizes the online tool PubMed to gather and condense information on the involvement of PCP channels and the associated roles of PCP pathway molecules in the onset of epilepsy. These findings are significant for advancing epilepsy treatment.
View Article and Find Full Text PDFCell Death Dis
December 2024
The Institute of Genetics and Cytology, Northeast Normal University, 130024, Changchun, China.
O-GlcNAcylation catalyzed by O-GlcNAc transferase (OGT) plays an important role in the regulation of tumor glycolysis. However, the mechanism underlying OGT regulation remains largely unknown. Here, we showed that coactivator associated arginine methyltransferase 1 (CARM1) sensed changes of extracellular glucose levels in non-small cell lung cancer (NSCLC) cells.
View Article and Find Full Text PDFNoro Psikiyatr Ars
November 2024
Department of Biochemistry, Faculty of Medicine, Gaziantep University, Gaziantep, Türkiye.
Introduction: USP9X has been associated with neurodevelopmental disorders due to its role in synaptic development and neural function. This study aimed to compare USP9X and TGF-β levels in children with autism and healthy controls, and explore their relationship with autism severity.
Methods: Serum USP9X and TGF-β levels were measured in 41 healthy control children (aged 3-12 years) and 41 children with autism.
Apoptosis
December 2024
Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510315, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!