How can we turn the PI3K/AKT/mTOR pathway down? Insights into inhibition and treatment of cancer.

Expert Rev Anticancer Ther

Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.

Published: June 2021

: The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway is a fundamental regulator of cell proliferation and survival. Dysregulation in this pathway leads to the development of cancer. Accumulating evidence indicates that dysregulation in this pathway is involved in cancer initiation, progression, and recurrence. However, the pathway consists of various signal transducing factors related with cellular events, such as transformation, tumorigenesis, cancer progression, and drug resistance. Therefore, it is very important to determine the targets in this pathway for cancer therapy. Although many drugs inhibiting this signaling pathway are in clinical trials or have been approved for treating solid tumors and hematologic malignancies, further understanding of the signaling mechanism is required to achieve better therapeutic efficacy.: In this review, we have describe the PI3K/AKT/mTOR pathway in detail, along with its critical role in cancer stem cells, for identifying potential therapeutic targets. We also summarize the recent developments in different types of signaling inhibitors.: Downregulation of the PI3K/AKT/mTOR pathway is very important for treating all types of cancers. Thus, further studies are required to establish novel prognostic factors to support the current progress in cancer treatment with emphasis on this pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14737140.2021.1918001DOI Listing

Publication Analysis

Top Keywords

pi3k/akt/mtor pathway
16
pathway
10
dysregulation pathway
8
cancer
7
turn pi3k/akt/mtor
4
pathway down?
4
down? insights
4
insights inhibition
4
inhibition treatment
4
treatment cancer
4

Similar Publications

Recently, exportin gene family members have been demonstrated to play essential roles in tumor progression. However, research on the clinical significance of exportin gene family members is limited in clear cell renal cell carcinoma (ccRCC). Pan-cancer data, ccRCC multiomics data, and single-cell sequence were included to analyze the differences in DNA methylation modification, single nucleotide variations (SNVs), copy number variations (CNVs), and expression levels of exportin gene family members.

View Article and Find Full Text PDF

Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.

Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.

View Article and Find Full Text PDF

Objectives: Plinabulin, a marine-derived anticancer drug targeting microtubules, exhibits anti-cancer effects on glioblastoma cells. However, its therapeutic potential, specifically for glioblastoma treatment, remains underexplored. This study aims to elucidate the mechanisms by which plinabulin exerts its effects on glioblastoma cells.

View Article and Find Full Text PDF

DRAM1 enhances the proliferation and metastasis of gastric cancer through the PI3K/AKT/mTOR signaling pathway and energy metabolism.

Sci Rep

January 2025

Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China.

Gastric cancer (GC) is a prevalent malignant tumor of the digestive system that is often diagnosed at advanced stages owing to inconspicuous early symptoms and a lack of specific examination methods. Effective treatment of advanced stages remains challenging, emphasizing the need for new therapeutic targets. Metabolic reprogramming, a hallmark of tumors, plays a pivotal role in tumor progression, immune evasion, and immune surveillance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!