Background: The review analyzes the possible role of autoimmune processes in the pathogenesis of schizophrenia and the evolution of concepts on this issue from its origin to the present.
Results: Risks of autoimmune processes causing schizophrenia are associated with several factors: an impaired functioning of dopaminergic and glutamatergic systems in the brain, kynurenine pathway disorder with overproduction of quinolinic, anthranilic, and kynurenic acids (possibly altering both neurons and T-regulators), increased intestinal permeability, as well as food antigens' effects, stress and infections with various pathogens at different stages of ontogenesis. An increase in the levels of proinflammatory cytokines and chemokines as well as a decrease in the levels of anti-inflammatory ones also may contribute to schizophrenia risks. Schizophrenia often occurs in those patients having various autoimmune diseases and their first-degree relatives.
Conclusion: Cases of schizophrenia resulted from autoimmune pathogenesis (including autoimmune encephalitis caused by autoantibodies against various neuronal antigens) are characterized by quite severe cognitive and psychotic symptoms and a less favorable prognosis. This severe course may result from the chronic immune damage of the neuronal receptors such as NMDA, GABA, and others and depend on hyperprolactinemia, induced by antipsychotics, but aggravating autoimmune processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.24869/psyd.2021.3 | DOI Listing |
BMC Pharmacol Toxicol
January 2025
Yanzhou District People's Hospital, Jining, Shandong, China.
Background: Osteoporosis (OP), often termed the "silent epidemic," poses a substantial public health burden. Emerging insights into the molecular functions of FBXW4 have spurred interest in its potential roles across various diseases.
Methods: This study explored FBXW4 by integrating DEGs from GEO datasets GSE2208, GSE7158, GSE56815, and GSE35956 with immune-related gene compilations from the ImmPort repository.
BMJ Open
January 2025
Rheumatology, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
Objectives: To explore the experiences and perspectives of female patients with autoimmune rheumatic diseases (ARDs) regarding sexual and reproductive health, including contraception, family planning, and pregnancy.
Design: Qualitative descriptive study using semi-structured interviews.
Setting: Specialised rheumatology clinic in a tertiary hospital in Monterrey, Mexico.
Bioinformatics
January 2025
School of Computer Science and engineering, Central South University, Changsha, 410083, China.
Motivation: T-cell receptors (TCRs) elicit and mediate the adaptive immune response by recognizing antigenic peptides, a process pivotal for cancer immunotherapy, vaccine design, and autoimmune disease management. Understanding the intricate binding patterns between TCRs and peptides is critical for advancing these clinical applications. While several computational tools have been developed, they neglect the directional semantics inherent in sequence data, which are essential for accurately characterizing TCR-peptide interactions.
View Article and Find Full Text PDFJ Adv Res
January 2025
Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Clinical Research and Experimental Center, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University. Guangzhou 510120, China. Electronic address:
Introduction: Developing strategies to improve the therapeutic efficacy of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in autoimmune diseases have garnered increased attention.
Objectives: To evaluate whether rapamycin-induced autophagy within the systemic lupus erythematosus (SLE) inflammatory microenvironment (Rapa-SLE) augments the therapeutic effects of MSC-derived EVs in SLE.
Methods: The therapeutic potential of the resulting EVs (Rapa-SLE-EV) was assessed in MRL/lpr mice.
Antigen processing and presentation via major histocompatibility complex (MHC) molecules are central to immune surveillance. Yet, quantifying the dynamic activity of MHC class I and II antigen presentation remains a critical challenge, particularly in diseases like cancer, infection and autoimmunity where these pathways are often disrupted. Current methods fall short in providing precise, sample-specific insights into antigen presentation, limiting our understanding of immune evasion and therapeutic responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!