Individuals with spinal cord injury suffer from seated instability due to impaired trunk neuromuscular function. Monitoring seated stability toward the development of closed-loop controlled neuroprosthetic technologies could be beneficial for restoring trunk stability during sitting in affected individuals. However, there is a lack of (1) a biomechanical characterization to quantify the relationship between the trunk kinematics and sitting balance; and (2) a validated wearable biomedical device for assessing dynamic sitting posture and fall-risk in real-time. This study aims to: (a) determine the limit of dynamic seated stability as a function of the trunk center of mass (COM) position and velocity relative to the base of support; (b) experimentally validate the predicted limit of stability using traditional motion capture; (c) compare the predicted limit of stability with that predicted in the literature for standing and walking; and (d) validate a wearable device for assessing dynamic seated stability and risk of loss of balance. First, we used a six-segment model of the seated human body for simulation. To obtain the limit of stability, we applied forward dynamics and optimization to obtain the maximum feasible initial velocities of the trunk COM that would bring the trunk COM position to the front-end of the base-of-support for a set of initial COM positions. Second, experimental data were obtained from fifteen able-bodied individuals who maintained sitting balance while base-of-support perturbations were applied with three different amplitudes. A motion capture system and four inertial measurement units (IMUs) were used to estimate the trunk COM motion states (i.e., trunk COM position and velocity). The margin of stability was calculated as the shortest distance of the instantaneous COM motion states to those obtained as the limit of stability in the state-space plane. All experimentally obtained trunk COM motion states fell within the limit of stability. A high correlation and small root-mean-square difference were observed between the estimated trunk COM states obtained by the motion capture system and IMUs. IMU-based wearable technology, along with the predicted limit of dynamic seated stability, can estimate the margin of stability during perturbed sitting. Therefore, it has the potential to monitor the seated stability of wheelchair users affected by trunk instability.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2021.3073352DOI Listing

Publication Analysis

Top Keywords

seated stability
24
limit stability
20
stability
15
margin stability
12
dynamic seated
12
predicted limit
12
motion capture
12
motion states
12
trunk
11
seated
8

Similar Publications

Background: The prevalence of stroke is high in both males and females, and it rises with age. Stroke often leads to sensor and motor issues, such as hemiparesis affecting one side of the body. Poststroke patients require torso stabilization exercises, but maintaining proper posture can be challenging due to their condition.

View Article and Find Full Text PDF

Background: Musculoskeletal adaptations are common in overhead athletes. As they also are involved in injury prevention, there has been an increase in their evaluation through shoulder screening over the last years. However, for some evaluations, and especially for functional testing, there is a lack of normative values, which limits the interpretation of the values measured.

View Article and Find Full Text PDF

Introduction: The Friedreich Ataxia Rating Scale-Activities of Daily Living (FARS-ADL) is a validated and highly utilized measure for evaluating patients with Friedreich Ataxia. While construct validity of FARS-ADL has been shown for spinocerebellar ataxia (SCA), content validity has not been established.

Methods: Individuals with SCA1 or SCA3 (n = 7) and healthcare professionals (HCPs) with SCA expertise (n = 8) participated in qualitative interviews evaluating the relevance, clarity, and clinical meaningfulness of FARS-ADL for assessment of individuals with SCA.

View Article and Find Full Text PDF

Context: To further improve rehabilitation programs while preventing overstretching the anterior cruciate ligament (ACL), a thorough understanding of the knee kinematics and ACL length change during closed kinetic chain and open kinetic chain (OKC) exercises is essential. The measurement of ACL graft length relates to the changes in strain experienced by the ACL graft during different types of exercises rather than simple physical length.

Objective: This study aimed to determine the effects of closed kinetic chain and OKC exercises on tibiofemoral kinematics and ACL graft length changes following double-bundle ACL reconstruction.

View Article and Find Full Text PDF

Background: Motion complexity is necessary for adapting to external changes, but little is known about trunk motion complexity during seated perturbation in individuals with spinal cord injury (SCI). We aimed to investigate changes following SCI in trunk segmental motion complexity across different perturbation directions and how they affect postural control ability in individuals with SCI.

Methods: A total of 17 individuals with SCI and 18 healthy controls participated in challenging sagittal-seated perturbations with hand protection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!