A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Proximity Enhanced Hydrogen Evolution Reactivity of Substitutional Doped Monolayer WS. | LitMetric

Proximity Enhanced Hydrogen Evolution Reactivity of Substitutional Doped Monolayer WS.

ACS Appl Mater Interfaces

Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.

Published: April 2021

The development of stable and low-cost catalysts with high reactivity to replace Pt-based ones is the central focus but challenging for hydrogen evolution reaction (HER). The incorporation of single atoms into two-dimensional (2D) supports has been demonstrated as an effective strategy because of the highly active single atomic sites and extremely large surface area of two-dimensional materials. However, the doping of single atoms is normally performed on the surface suffering from low stability, especially in acidic media. Moreover, it is experimentally challenging to produce monolayered 2D materials with atomic doping. Here, we propose a strategy to incorporate single foreign Fe atoms to substitute W atoms in sandwiched two-dimensional WS. Because of the charge transfer between the doped Fe atom and its neighboring S atoms on the surface, the proximate S atoms become active for HER. Our theoretical prediction is later verified experimentally, showing an enhanced catalytic reactivity of Fe-doped WS in HER with the Volmer-Heyrovsky mechanism involved. We refer to this strategy as proximity catalysis, which is expected to be extendable to more sandwiched two-dimensional materials as substrates and transition metals as dopants.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c00139DOI Listing

Publication Analysis

Top Keywords

hydrogen evolution
8
single atoms
8
two-dimensional materials
8
sandwiched two-dimensional
8
atoms
6
proximity enhanced
4
enhanced hydrogen
4
evolution reactivity
4
reactivity substitutional
4
substitutional doped
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!