As an emerging digital production technology, 3D food printing intends to meet the demand for customized food design, personalized nutrition, simplification of the food supply chain system, and greater food material diversity. Most 3D food printing studies focus on the development of materials for extrusion-based food printing. Plant-based foods are essential for a healthy diet, and they are growing in popularity as their positive effects on human health gain wider recognition. The number of original studies on plant-based printable materials has increased significantly in the past few years. Currently, there is an absence of a comprehensive systematic review on the applications of plant-based materials in extrusion-based food printing. Thus, this review aims to provide a more intuitive overview and guidance for future research on 3D printing of plant-based materials. The requirements, classifications, and binding mechanisms of extrusion-based food printing materials are first summarized. Additionally, notable recent achievements and emerging trends involving the use of plant-based materials in extrusion-based food printing are reviewed across three categories, namely, hot-melt (e.g., chocolate), hydrogel, and soft (e.g., cereal- and fruit/vegetable-based) materials. Finally, the challenges facing 3D food printing technology as well as its future prospects are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408398.2021.1911929DOI Listing

Publication Analysis

Top Keywords

food printing
36
extrusion-based food
20
plant-based materials
16
materials extrusion-based
16
food
12
printing
9
applications plant-based
8
materials
8
printing plant-based
8
plant-based
6

Similar Publications

Propolis is a valuable natural resource for extracting various beneficial compounds. This study explores a sustainable extraction approach for Brazilian green propolis. First, supercritical fluid extraction (SFE) process parameters were optimized (co-solvent: 21.

View Article and Find Full Text PDF

Unveiling the potential of bean proteins: Extraction methods, functional and structural properties, modification techniques, physiological benefits, and diverse food applications.

Int J Biol Macromol

January 2025

Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan 43500, Malaysia; Future Food Beacon of Excellence, Faculty of Science, University of Nottingham, Loughborough LE 12 5RD, United Kingdom.

Bean proteins, known for their sustainability, versatility, and high nutritional value, represent a valuable yet underutilized resource, receiving less industrial attention compared to soy and pea proteins. This review examines the structural and molecular characteristics, functional properties, amino acid composition, nutritional value, antinutritional factors, and digestibility of bean proteins. Their applications in various food systems, including baked goods, juice and milk substitutes, meat alternatives, edible coatings, and 3D printing inks, are discussed.

View Article and Find Full Text PDF

Low-internal-phase and high-viscoelastic emulsion gel synergistically stabilized by buckwheat protein microgel and carboxylated cellulose nanofibers.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, PR China. Electronic address:

With the increasing demand for healthy diets, low-fat foods have gradually become a hot issue. This study successfully prepared low-internal-phase and high-viscoelastic emulsion gels using the synergistic effect between buckwheat protein microgel (BPM) and carboxylated cellulose nanofibers (CNF). The effects of the ratio of BPM to CNF on the microstructure, stability, rheological properties, and 3D printing characteristics of the emulsion gels were investigated.

View Article and Find Full Text PDF

A 44-year-old man with a history of facioscapulohumeral muscular dystrophy and pectus excavatum presented with multiyear history of progressive, severe respiratory dysfunction, pain, recurrent respiratory infection, and chest wall deformity. With bioprosthetic engineers, the surgical team customized a 3-dimensional printed model of a sternal implant interacting with the patient's anatomy. After approval from the Food and Drug Administration, the customized sternal plates were created and implanted in a sternal reconstruction operation.

View Article and Find Full Text PDF

Effect of ultrasound synergistic pH shift modification treatment on Hericium erinaceus protein structure and its application in 3D printing.

Int J Biol Macromol

January 2025

School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China; Xi' an Key Laboratory of Precision Nutrition and Functional Product Innovation, Shaanxi University of Science and Technology, Xi'an 710021, China. Electronic address:

This study investigates the effects of ultrasound synergistic pH shift modification on the structural and functional properties of Hericium erinaceus (HE) proteins. The modification resulted in significant changes in the molecular structure of HE proteins, including increased solubility (49.69 % at pH 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!