Oxidative heterofunctionalization reactions are among the most attractive methods for the conversion of alkenes and heteroatomic nucleophiles into complex saturated heterocycles. However, the state-of-the-art transition-metal-catalyzed methods to effect oxidative heterofunctionalizations are typically limited to unhindered olefins, and different nucleophilic partners generally require quite different reaction conditions. Herein, we show that Cu(II)-mediated radical-polar crossover allows for highly efficient and exceptionally mild photocatalytic oxidative heterofunctionalization reactions between bulky tri- and tetrasubstituted alkenes and a wide variety of nucleophilic partners. Moreover, we demonstrate that the broad scope of this transformation arises from photocatalytic alkene activation and thus complements existing transition-metal-catalyzed methods for oxidative heterofunctionalization. More broadly, these results further demonstrate that Cu(II) salts are ideal terminal oxidants for photoredox applications and that the combination of photocatalytic substrate activation and Cu(II)-mediated radical oxidation can address long-standing challenges in catalytic oxidation chemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547160 | PMC |
http://dx.doi.org/10.1021/jacs.1c02747 | DOI Listing |
J Org Chem
January 2025
Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
In this study, we present a novel catalyst-free energy transfer mediated radical rearrangement strategy for the aryl-heterofunctionalization of unactivated alkynes, leading to the synthesis of polyfunctional olefins with exceptional stereoselectivity. This innovative approach, driven by visible light, exemplifies green chemistry principles by eliminating the reliance on transition metals, external oxidants, and photocatalysts. The broad applicability of our method is demonstrated through the successful synthesis of a diverse array of compounds, including vinyl sulfones, vinyl selenides, and vinyl sulfides.
View Article and Find Full Text PDFJACS Au
November 2024
School of Chemistry, Sun Yat-sen University, Guangzhou 510006, P.R. China.
J Org Chem
August 2024
Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
Catalytic difunctionalization with the direct activation of (O)P-H bonds has been recently established as a potentially robust platform to generate valuable organophosphorus compounds. In terms of 1,3-enynes, despite of the various catalytic methods developed for hydrophosphorylation, the radical-mediated hetero-functionalization of two different atoms has been less explored. In this study, we disclosed an electrochemically induced hydroxyphosphorylation of 1,3-enynes for the construction of phosphinyl-substituted propargyl alcohols.
View Article and Find Full Text PDFChem Sci
May 2022
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University China
The α-umpolung of carbonyl compounds significantly expands the boundaries of traditional carbonyl chemistry. Despite various umpolung methods available today, reversing the inherent reactivity of carbonyls still remains a substantial challenge. In this article, we report the first use of sulfonium salts, of well-established hypervalent iodines, for the carbonyl umpolung event.
View Article and Find Full Text PDFJ Am Chem Soc
April 2021
Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
Oxidative heterofunctionalization reactions are among the most attractive methods for the conversion of alkenes and heteroatomic nucleophiles into complex saturated heterocycles. However, the state-of-the-art transition-metal-catalyzed methods to effect oxidative heterofunctionalizations are typically limited to unhindered olefins, and different nucleophilic partners generally require quite different reaction conditions. Herein, we show that Cu(II)-mediated radical-polar crossover allows for highly efficient and exceptionally mild photocatalytic oxidative heterofunctionalization reactions between bulky tri- and tetrasubstituted alkenes and a wide variety of nucleophilic partners.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!