Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fugitive dust associated with surface mining activities is one of the principal vectors for transport of airborne contaminants in Canada's Athabasca oil sands region (AOSR). Effective environmental management requires quantitative identification of the sources of this dust. Using natural abundance radiocarbon (ΔC) and dual (δC, δH) compound-specific isotope analysis (CSIA), this study investigated the sources of dust and particulate-bound polycyclic aromatic compounds (PACs) deposited in AOSR lake snowpack. Lower ΔC values, higher particulate and PAC loadings, and lower δC values for phenanthrene and C1-alkylated phenanthrenes/anthracenes (C1-Phen) at sites closer to the mining operations indicated unprocessed oil sand and/or petroleum coke (petcoke-a byproduct of bitumen upgrading) as major sources of anthropogenic fugitive dust. However, a Bayesian isotopic mixing model that incorporated both δC and δH could discriminate petcoke from oil sand, and determined that petcoke comprised between 44 and 95% (95% credibility intervals) of a C1-Phen isomer at lakes <25 km from the heart of the mining operations, making it by far the most abundant source. This study is the first to demonstrate the potential of CSIA to provide accurate PAC source apportionment in snowpack and reveals that petcoke rather than oil sand is the main source of mining-related particulate PACs deposited directly to AOSR lakes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.0c08339 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!