Nanostructured Carbon Electrocatalysts for Energy Conversions.

Small

Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA.

Published: December 2021

The growing energy demand worldwide has led to increased use of fossil fuels. This, in turn, is making fossil fuels dwindle faster and cause more negative environmental impacts. Thus, alternative, environmentally friendly energy sources such as fuel cells and electrolyzers are being developed. While significant progress has already been made in this area, such energy systems are still hard to scale up because of their noble metal catalysts. In this concept paper, first, various scalable nanocarbon-based electrocatalysts that are being synthesized for energy conversions in these energy systems are introduced. Next, notable heteroatom-doping and nanostructuring strategies that are applied to produce different nanostructured carbon materials with high electrocatalytic activities for energy conversions are discussed. The concepts used to develop such materials with different structures and large density of dopant-based catalytic functional groups in a sustainable way, and the challenges therein, are emphasized in the discussions. The discussions also include the importance of various analytical, theoretical, and computational methods to probe the relationships between the compositions, structures, dopants, and active catalytic sites in such materials. These studies, coupled with experimental studies, can further guide innovative synthetic routes to efficient nanostructured carbon electrocatalysts for practical, large-scale energy conversion applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202007136DOI Listing

Publication Analysis

Top Keywords

nanostructured carbon
12
energy conversions
12
carbon electrocatalysts
8
energy
8
fossil fuels
8
energy systems
8
electrocatalysts energy
4
conversions growing
4
growing energy
4
energy demand
4

Similar Publications

Metalgel Fiber with Excellent Electrical and Mechanical Properties.

ACS Appl Mater Interfaces

January 2025

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China.

With the rapid advancement of soft electronics, particularly the rise of fiber electronics and smart textiles, there is an urgent need to develop high-performance fiber materials with both excellent electrical and mechanical properties. However, existing fiber materials including metal fibers, carbon-based fibers, intrinsically conductive polymer fibers, and composite fibers struggle to simultaneously meet the requirements. Here, we introduce a metalgel fiber with a unique structure.

View Article and Find Full Text PDF

The electrochemical reduction of CO (CORR) to value-added products has garnered significant interest as a sustainable solution to mitigate CO emissions and harness renewable energy sources. Among CORR products, formic acid/formate (HCOOH/HCOO) is particularly attractive due to its industrial relevance, high energy density, and potential candidate as a liquid hydrogen carrier. This study investigates the influence of the initial oxidation state of tin on CORR performance using nanostructured SnO catalysts.

View Article and Find Full Text PDF

Magnesium-based materials, which are known for their light weight and exceptional strength-to-weight ratio, hold immense promise in the biomedical, automotive, aerospace, and military sectors. However, their inherent limitations, including low wear resistance and poor mechanical properties, have driven the development of magnesium-based metal matrix composites (Mg-MMCs). The pivotal role of powder metallurgy (PM) in fabricating Mg-MMCs was explored, enhancing their mechanical and corrosion resistance characteristics.

View Article and Find Full Text PDF

In the current work, the MWCNTs/ZnO nanocomposite was successfully synthesized using simple method. Then, FE-SEM, XRD, and EDX techniques were applied for morphological and structural characterization. Afterward, a sensitive voltammetric sensor based on modification of a screen-printed carbon electrode (SPCE) using MWCNTs/ZnO nanocomposite was developed for the determination of doxorubicin in the presence of dacarbazine.

View Article and Find Full Text PDF

A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein biomolecules are immobilized on a quantum dots-polypyrrole nanocomposite in the improved electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!