Progressive degeneration of retinal ganglion cells (RGCs) is a major characteristic of glaucoma, whose underlying mechanisms are still largely unknown. An E50K mutation in the Optineurin (OPTN) gene is a leading cause of normal tension glaucoma (NTG), directly affecting RGCs without high intraocular pressure and causing severe glaucomatous symptoms in clinical settings. A systematic analysis of the NTG mouse model is crucial for better understanding of the underlying pathological mechanisms for glaucoma. To elucidate proteomic and biochemical pathway alterations during NTG development, we established an OPTN E50K mutant mouse model through CRISPR/Cas9. Retinal proteins from resulting mice exhibiting glaucomatous phenotypes were subject to tandem mass tag-labeled quantitative proteomics and then analyzed through bioinformatics methods to characterize the molecular and functional signatures of NTG. We identified 6364 quantitative proteins in our proteomic analysis. Bioinformatics analysis revealed that OPTN E50K mice experienced protein synthesis dysregulation, age-dependent energy defects and autophagy-lysosome pathway dysfunction. Certain biological features, including amyloid deposition, RNA splicing, microglia activation and reduction of crystallin production, were similar to Alzheimer's disease. Our study is the first to describe proteomic and biochemical pathway alterations in NTG pathogenesis during disease advancement. Several proteomic signatures overlapped with retinal changes found in the ad mice model, suggesting the presence of common mechanisms between age-related degenerative disorders, as well as prospective new targets for diagnostic and therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab099DOI Listing

Publication Analysis

Top Keywords

optn e50k
12
proteomic analysis
8
normal tension
8
tension glaucoma
8
mouse model
8
proteomic biochemical
8
biochemical pathway
8
pathway alterations
8
alterations ntg
8
proteomic
5

Similar Publications

OPTN (E50K) mutation is one of the significant pathogenic mutations in normal tension glaucoma (NTG). The molecular mechanism of NTG optic nerve injury is complex and diverse; its key mechanism is still unclear. The NLR family pyrin domain containing (NLRP3) inflammasome plays an essential role in the occurrence and development of inflammation.

View Article and Find Full Text PDF

Glaucoma is a neurodegenerative disease that results in the degeneration of retinal ganglion cells (RGCs) and subsequent loss of vision. While RGCs are the primary cell type affected in glaucoma, neighboring cell types selectively modulate RGCs to maintain overall homeostasis. Among these neighboring cell types, astrocytes, microvascular endothelial cells (MVECs), and pericytes coordinate with neurons to form the neurovascular unit that provides a physical barrier to limit the passage of toxic materials from the blood into neural tissue.

View Article and Find Full Text PDF

RIP1 inhibition protects retinal ganglion cells in glaucoma models of ocular injury.

Cell Death Differ

October 2024

Department of Immunology Discovery, Genentech, 1 DNA Way, South San Francisco, CA, USA.

Receptor-interacting protein 1 (RIP1, RIPK1) is a critical mediator of multiple signaling pathways that promote inflammatory responses and cell death. The kinase activity of RIP1 contributes to the pathogenesis of a number of inflammatory and neurodegenerative diseases. However, the role of RIP1 in retinopathies remains unclear.

View Article and Find Full Text PDF

The ability to derive retinal ganglion cells (RGCs) from human pluripotent stem cells (hPSCs) has led to numerous advances in the field of retinal research, with great potential for the use of hPSC-derived RGCs for studies of human retinal development, in vitro disease modeling, drug discovery, as well as their potential use for cell replacement therapeutics. Of all these possibilities, the use of hPSC-derived RGCs as a human-relevant platform for in vitro disease modeling has received the greatest attention, due to the translational relevance as well as the immediacy with which results may be obtained compared to more complex applications like cell replacement. While several studies to date have focused upon the use of hPSC-derived RGCs with genetic variants associated with glaucoma or other optic neuropathies, many of these have largely described cellular phenotypes with only limited advancement into exploring dysfunctional cellular pathways as a consequence of the disease-associated gene variants.

View Article and Find Full Text PDF

Roles of Optineurin and Extracellular Vesicles in Glaucomatous Retinal Cell Loss.

Curr Med Sci

April 2023

Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

Objective: To explore the role of extracellular vesicles (EVs) in the pathogenesis of glaucoma caused by E50K mutation.

Methods: A photoreceptor cell line, RGC-5, was transfected with empty plasmids and plasmids expressing wild-type (WT) optineurin (OPTN) or E50K OPTN to investigate the effects of OPTN glaucoma as well as to identify the role of EVs in glaucoma pathology. The RGC-5 cells were also stimulated with glutamate, and their viability was evaluated using flow cytometry or CCK-8 assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!