The efficiency of PbS quantum dot (QD) solar cells has significantly increased in recent years, strengthening their potential for industrial applications. The vast majority of state-of-the-art devices utilize 1,2-ethanedithiol (EDT)-coated PbS QD hole extraction layers, which lead to high initial performance, but result in poor device stability. While excellent performance has also been demonstrated with organic extraction layers, these devices include a molybdenum trioxide (MoO) layer, which is also known to decrease device stability. Herein, we demonstrate that organic layers based on a poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) polymer doped with CF can serve as hole extraction layers for efficient EDT-free and MoO-free QD solar cells. Such layers are shown to offer high conductivity for facile hole transport to the anode, while effectively blocking electrons due to their low electron affinity. We show that our approach is versatile and is applicable also to AgBiS QD solar cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c01462 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!