Researchers need models that mirror the biology of organisms. Primary fibroblasts play essential roles in wound healing and are present in many tissues. They are widely used in studies of cell cycle control, reprogramming, and aging. Though extraction protocols exist, alternatives that maximize use of available resources are useful. Here, we present our protocol for extracting primary fibroblasts from adult mouse ear pinnae, an often-discarded source of primary cells, which consistently yield large, pure numbers of primary fibroblasts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024749 | PMC |
http://dx.doi.org/10.1016/j.xpro.2021.100406 | DOI Listing |
J Biochem Mol Toxicol
February 2025
Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
Cancer-associated fibroblasts (CAFs) are key stroma cells that play dominant roles in the migration and invasion of several types of cancer through the secretion of inflammatory cytokine IL-17A. This study aims to identify the potential role and regulatory mechanism of CAFs-secreted IL-17A in the migration and invasion of prostate cancer (PC). CAFs and normal fibroblasts (NFs) were obtained from fresh PC and its adjacent normal tissues, respectively.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China.
Purpose: Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Oxaliplatin (OXA) is currently the primary chemotherapeutic agent for CRC, but its efficacy is limited by the tumor microenvironment (TME). Here, we present a combined approach of chemotherapy and TME modulation for CRC treatment.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.
Background: Interest in biological augmentation for improving bone-tendon interface (BTI) healing after arthroscopic rotator cuff repair (ARCR) is growing. Dermal fibroblasts, known for collagen synthesis similar to tenocytes, have shown effectiveness in BTI healing in chronic rotator cuff tear (RCT) models in rabbits. However, no human clinical trials have been conducted.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.
View Article and Find Full Text PDFNat Rev Drug Discov
January 2025
Institute of Cell Growth Factor, Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, Wenzhou, Zhejiang, China.
The fibroblast growth factor (FGF) family comprises 15 paracrine-acting and 3 endocrine-acting polypeptides, which govern a multitude of processes in human development, metabolism and tissue homeostasis. Therapeutic endocrine FGFs have recently advanced in clinical trials, with FGF19 and FGF21-based therapies on the cusp of approval for the treatment of primary sclerosing cholangitis and metabolic syndrome-associated steatohepatitis, respectively. By contrast, while paracrine FGFs were once thought to be promising drug candidates for wound healing, burns, tissue repair and ischaemic ailments based on their potent mitogenic and angiogenic properties, repeated failures in clinical trials have led to the widespread perception that the development of paracrine FGF-based drugs is not feasible.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!