A protocol for transposon insertion sequencing in to identify factors that maintain heterochromatin.

STAR Protoc

Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.

Published: June 2021

Transposon insertion sequencing (TIS) is a highly effective method used with bacteria to identify genes important for growth in any condition of interest. Previously, we adapted this method to identify essential genes of the yeast . Here, we describe modifications used to identify genes necessary for the formation of centromeric heterochromatin. For complete details on the use and execution of this protocol, please refer to Lee et al. (2020).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024771PMC
http://dx.doi.org/10.1016/j.xpro.2021.100392DOI Listing

Publication Analysis

Top Keywords

transposon insertion
8
insertion sequencing
8
identify genes
8
protocol transposon
4
identify
4
sequencing identify
4
identify factors
4
factors maintain
4
maintain heterochromatin
4
heterochromatin transposon
4

Similar Publications

Advanced genome engineering enables precise and customizable modifications of bacterial species, and toolsets that exhibit broad-host compatibility are particularly valued owing to their portability. Tn5 transposon vectors have been widely used to establish random integrations of desired DNA sequences into bacterial genomes. However, the iteration of the procedure remains challenging because of the limited availability and reusability of selection markers.

View Article and Find Full Text PDF

Investigating How Genomic Contexts Impact IS5 Transposition Within the Genome.

Microorganisms

December 2024

Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0116, USA.

Insertions of the transposable element IS5 into its target sites in response to stressful environmental conditions, DNA structures, and DNA-binding proteins are well studied, but how the genomic contexts near IS5's native loci impact its transpositions is largely unknown. Here, by examining the roles of all 11 copies of IS5 within the genome of strain BW25113 in transposition, we reveal that the most significant copy of IS5 is one nested within and oriented in the same direction as the gene, while two other copies of IS5 harboring point mutations are hardly transposed. Transposition activity is heavily reliant on the upstream promoter that drives IS5 transposase gene , with more transpositions resulting from greater promoter activity.

View Article and Find Full Text PDF

: Transposable elements (TEs) and noncoding sequences are major components of the genome, yet their functional contributions to long noncoding RNAs (lncRNAs) are not well understood. Although many lncRNAs originating from TEs (TE-lncRNAs) have been identified across various organisms, their characteristics and regulatory roles, particularly in insects, remain largely unexplored. This study integrated multi-omics data to investigate TE-lncRNAs in , focusing on the influence of transposons across different omics levels.

View Article and Find Full Text PDF

Plant genomes possess numerous transposable element (TE) insertions that have occurred during evolution. Most TEs are silenced or diverged; therefore, they lose their ability to encode proteins and are transposed in the genome. Knowledge of active plant TEs and TE-encoded proteins essential for transposition and evasion of plant cell transposon silencing mechanisms remains limited.

View Article and Find Full Text PDF

Unlabelled: Strain-level variation among host-associated bacteria often determines host range and the extent to which colonization is beneficial, benign, or pathogenic. is a beneficial symbiont of the light organs of fish and squid with known strain-specific differences that impact host specificity, colonization efficiency, and interbacterial competition. Here, we describe how the conserved global regulator, H-NS, has a strain-specific impact on a critical colonization behavior: biofilm formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!