Graphene is usually embedded into polymer matrices for the development of thermally conductive composites, preferably forming an interconnected and anisotropic framework. Currently, the directional self-assembly of exfoliated graphene sheets is demonstrated to be the most effective way to synthesize anisotropic graphene frameworks. However, achieving a thermal conductivity enhancement (TCE) over 1500% with per 1 vol% graphene content in polymer matrices remains challenging, due to the high junction thermal resistance between the adjacent graphene sheets within the self-assembled graphene framework. Here, a multiscale structural modulation strategy for obtaining highly ordered structure of graphene framework and simultaneously reducing the junction thermal resistance is demonstrated. The resultant anisotropic framework contributes to the polymer composites with a record-high thermal conductivity of 56.8-62.4 W m K at the graphene loading of ≈13.3 vol%, giving an ultrahigh TCE per 1 vol% graphene over 2400%. Furthermore, thermal energy management applications of the composites as phase change materials for solar-thermal energy conversion and as thermal interface materials for electronic device cooling are demonstrated. The finding provides valuable guidance for designing high-performance thermally conductive composites and raises their possibility for practical use in thermal energy storage and thermal management of electronics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025029PMC
http://dx.doi.org/10.1002/advs.202003734DOI Listing

Publication Analysis

Top Keywords

graphene framework
12
thermal energy
12
graphene
10
thermal
9
multiscale structural
8
structural modulation
8
anisotropic graphene
8
polymer composites
8
energy management
8
polymer matrices
8

Similar Publications

Breaking the Trade-Off Between Electrical Conductivity and Mechanical Strength in Bulk Graphite Using Metal-Organic Framework-Derived Precursors.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

High-performance bulk graphite (HPBG) that simultaneously integrates superior electrical conductivity and excellent strength is in high demand, yet it remains critical and challenging. Herein a novel approach is introduced utilizing MOF-derived nanoporous metal/carbon composites as precursors to circumvent this traditional trade-off. The resulting bulk graphite, composed of densely packed multilayered graphene sheets functionalized with diverse cobalt forms (nanoparticles, single atoms, and clusters), exhibits unprecedented electrical conductivity in all directions (in-plane: 7311 S cm⁻¹, out-of-plane: 5541 S cm⁻¹) and excellent mechanical strength (flexural: 101.

View Article and Find Full Text PDF

Metal halide perovskites (MHPs) have attracted significant attention owing to their simple manufacturing process and unique optoelectronic properties. Their reversible electrical or optical property changes in response to oxidizing or reducing environments make them prospective materials for gas detection technologies. Despite advancements in perovskite-based sensor research, the mechanisms behind perovskite-gas interactions, vital for sensor performance, are still inconclusive.

View Article and Find Full Text PDF

Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.

View Article and Find Full Text PDF

This study developed a novel PbS-rGO composite counter electrode to enhance the performance of quantum dot-sensitized solar cells (QDSSCs). The composite was synthesized a hydrothermal method by anchoring PbS nanocubes onto reduced graphene oxide (rGO) sheets. The effect of the mass ratio of rGO to PbS (0.

View Article and Find Full Text PDF

Ultrafast Lithium-Ion Transport Engineered by Nanoconfinement Effect.

Adv Mater

January 2025

School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.

Article Synopsis
  • The study highlights the impressive lithium ionic conductivity achieved using graphene oxide laminar membranes, which significantly exceeds that of traditional lithium-ion electrolytes.
  • At 170 mS cm, the nanoconfined lithium electrolyte demonstrates extraordinary performance, maintaining useful conductivity even at extremely low temperatures.
  • The findings suggest that the enhanced ion transport is due to unique layer distribution effects in the nanochannels, potentially revolutionizing energy storage technologies by integrating these channels into lithium battery components.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!