A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Induction of Adipogenic Genes by Novel Serum-Free Conditions From Pre-adipocyte 3T3-L1 and ST2 Cells. | LitMetric

AI Article Synopsis

  • Obesity is a significant global health issue caused by excessive fat accumulation, prompting the need for effective research models involving adipocytes.
  • A novel serum-free differentiation protocol for 3T3-L1 and ST2 pre-adipocytes was developed, utilizing free fatty acids (FFA) and bovine serum albumin (BSA) instead of fetal bovine serum (FBS).
  • The new method showed promising results in fatty acid uptake and adipogenic gene expression, providing a viable alternative to existing serum-inclusive differentiation techniques.

Article Abstract

Introduction Obesity, defined as a condition of excessive fat accumulation in adipose tissue, is a global epidemic implicated in a myriad of processes deleterious to human health. It has become one of the leading impediments to public health globally. The study of obesity necessitates adipocyte models, which commonly employ a medium enriched with adipogenic hormones and fetal bovine serum (FBS) to culture terminal adipocytes. In the current study, we developed a novel protocol for serum-free differentiation of 3T3-L1 and ST2 pre-adipocytes using media enriched with free fatty acids (FFA) and bovine serum albumin (BSA). Differentiation was characterized by measuring FFA uptake and changes in expression of adipogenic genes. The novel protocol was also compared against the existing serum-inclusive method. Methods The National Institutes of Health (NIH)-3T3-L1 and ST2 pre-adipocyte cells were maintained in Dulbecco's Modified Eagle Medium (DMEM) containing 10% calf serum and 1% penicillin-streptomycin and Roswell Park Memorial Institute Medium (RPMI) with 10% FBS and 1% penicillin-streptomycin mixture, respectively, at 37℃, 5% CO in a humidified atmosphere. Differentiation was induced using a mixture of 0.25 µM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 10 µg/mL insulin, or 1% insulin-transferrin-selenium (ITS). Cells were cultured in serum-free media containing DMEM with BSA (2.5%) and lipid mixture 1 (LM1 1%) as well as serum-inclusive media enriched with 10% FBS. Total RNA was extracted, and quantitative reverse transcription-polymerase chain reaction (RT-PCR) was performed using delta-delta Ct method, also known as the 2 methodRibosomal protein, large, P0 (RPLP0) was used as a house-keeping gene for quantitation of relative expressions. Results We observed an increase in fatty acid accumulation relative to controls using Oil Red O neutral lipid staining and spectrophotometry. This result was consistent with the effects of the serum-inclusive method. Differentiation was further confirmed by increased gene expression of adipogenic transcription factors - peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα); adipogenic genes - fatty acid-binding protein 4 (FABP4/aP2) and fatty acid translocase (FAT/CD36); and the lipogenic gene - perilipin by using quantitative RT-PCR. Conclusion Our data suggest that serum-free differentiation can significantly enhance the free fatty acid accumulation as well as adipogenic gene expression in both NIH-3T3-L1 and ST2 pre-adipocyte cells. Given the shortcomings of FBS, this method may provide advantages to the serum-inclusive protocols described previously.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036016PMC
http://dx.doi.org/10.7759/cureus.13831DOI Listing

Publication Analysis

Top Keywords

adipogenic genes
12
fatty acid
12
genes novel
8
3t3-l1 st2
8
bovine serum
8
novel protocol
8
serum-free differentiation
8
media enriched
8
free fatty
8
serum-inclusive method
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!