The effect of increasing [K+]0 on 3H-glycogen levels was examined in mouse cerebral cortical slices. K+ stimulates in a time- and concentration-dependent manner the hydrolysis of 3H-glycogen. Over 70% of the maximal effect is reached within 30 sec and the EC50 for the glycogenolytic action of K+ is 11 mM. Significant 3H-glycogen hydrolysis occurs at 5-12 mM [K+]0, concentrations reached by the ion in the extracellular space during neuronal activity. The K+-evoked glycogenolysis is Ca2+-dependent, and is inhibited by Ca2+-channel blockers such as Ni2+ and Mn2+, but not by Cd2+, nifedipine, and omega-conotoxin. Furthermore, the effect of K+ is not enhanced by the Ca2+-channel agonist Bay K 8644. This type of pharmacological profile suggests that the activation of voltage-sensitive Ca2+ channels of the T subtype mediates the glycogenolytic action of K+. This set of observations suggests that K+ released in the extracellular space by active neurons may promote the mobilization of energy substrates and therefore play a role in the coupling between neuronal activity and energy metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6569342PMC
http://dx.doi.org/10.1523/JNEUROSCI.08-06-01922.1988DOI Listing

Publication Analysis

Top Keywords

extracellular space
12
neuronal activity
12
concentrations reached
8
space neuronal
8
mouse cerebral
8
glycogenolytic action
8
reached extracellular
4
activity promotes
4
promotes ca2+-dependent
4
ca2+-dependent glycogen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!