No prophylactic vaccine has provided robust protection against human immunodeficiency virus type 1 (HIV-1). Vaccine-induced broadly neutralizing antibodies (bNAbs) have not been achieved in humans and most animals; however, cows vaccinated with HIV-1 envelope trimers produce bNAbs with unusually long third heavy complementarity-determining regions (CDRH3s). Alongside neutralization, Fc-mediated effector functions, including antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADP), may be critical for bNAb antiviral activity. Here, we aimed to augment the Fc-dependent effector functions of a chimeric human-bovine bNAb, NC-Cow1, which binds the CD4 binding site (CD4bs) and exhibits broader and more potent neutralization than most human CD4bs bNAbs by using an exceptionally long 60-amino acid (aa) CDRH3. The bovine variable region of NC-Cow1 was paired with a human IgG1 Fc region mutated to create the following three variants: G236R/L328R (GRLR) that abrogates Fc-gamma receptor (FcγR) binding, and two variants that enhance binding, namely, G236A/S239D/I332E (GASDIE) and G236A/S239D/A330L/I332E (GASDALIE). Both GASDIE and GASDALIE improved binding to human FcγRIIA and FcγRIIIA, enhanced human natural killer (NK) cell activation, and mediated higher levels of ADCC and ADP activity than the wild-type human IgG1 Fc. GASDALIE mediated higher phagocytic activity than GASDIE. As expected, GRLR eliminated binding to FcγRs and did not mediate ADCC or ADP. We demonstrated that mutations in the human Fc region of bovine chimeric antibodies with ultralong CDRH3s could enhance antibody effector functions while maintaining envelope binding and neutralization. This study will have significant implications in the development of multifunctional anti-HIV antibodies, which may be important to prevent HIV-1 transmission in an antibody-based topical microbicide. Despite successful antiviral chemotherapy, human immunodeficiency virus (HIV) is still a lifelong persistent virus, and no vaccine yet prevents HIV transmission. Topical microbicides offer an important alternative method to prevent sexual transmission of HIV-1. With the production of highly potent anti-HIV-1 broadly neutralizing antibodies (bNAbs) and multifunctional antibodies, monoclonal antibodies are now important prophylactic agents. Recently discovered anti-HIV-1 bovine bNAbs (with higher potency and breadth than most human bNAbs) could be novel candidates as potent topical microbicides. Our study is significant as it demonstrates the compatibility of combining bovine-derived neutralization with human-derived antibody-effector functions. This study is a new approach to antibody engineering that strengthens the feasibility of using high-potency bovine variable region bNAbs with augmented Fc function and promotes them as a strong candidate for antibody-mediated therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8316091PMC
http://dx.doi.org/10.1128/JVI.00219-21DOI Listing

Publication Analysis

Top Keywords

broadly neutralizing
12
neutralizing antibodies
12
effector functions
12
human
9
antibody-dependent cellular
8
cellular cytotoxicity
8
antibodies prophylactic
8
human immunodeficiency
8
immunodeficiency virus
8
antibodies bnabs
8

Similar Publications

Unlabelled: Current influenza vaccination approaches protect against specific viral strains, but do not consistently induce broad and long-lasting protection to the diversity of circulating influenza viruses. Single-cycle viruses delivered to the respiratory tract may offer a promising solution as they safely express a diverse array of viral antigens by undergoing just one round of cell infection in their host and stimulate broadly protective resident memory T-cell responses in the lung. We have previously developed a vaccine candidate called S-FLU, which is limited to a single cycle of infection by inactivation of the hemagglutinin signal sequence and induces a broadly cross-reactive T-cell response and antibodies to neuraminidase, but fails to induce neutralizing antibodies to hemagglutinin after intranasal administration.

View Article and Find Full Text PDF

Towards developing multistrain PEDV vaccines: Integrating basic concepts and SARS-CoV-2 pan-sarbecovirus strategies.

Virology

January 2025

Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. Electronic address:

Porcine epidemic diarrhea virus (PEDV) is a major pathogen impacting the global pig industry, with outbreaks causing significant financial losses. The genetic variability of PEDV has posed challenges for vaccine development since its identification in the 1970s, a problem that intensified with its global emergence in the 2010s. Since current vaccines provide limited cross-protection against PEDV strains, and the development of multistrain PEDV vaccines remains an underexplored area of research, there is an urgent need for improved vaccine solutions.

View Article and Find Full Text PDF

Inactivation of Zika Virus with Hydroxypropyl-Beta-Cyclodextrin.

Vaccines (Basel)

January 2025

Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.

: Zika virus (ZIKV) infection is associated with life-threatening diseases in humans. To date, there are no available FDA-approved therapies or vaccines for the specific treatment or prevention of ZIKV infection. Variation in the ZIKV envelope protein (Env), along with its complex quaternary structure, presents challenges to synthetic approaches for developing an effective vaccine and broadly neutralizing antibodies (bnAbs).

View Article and Find Full Text PDF

Anti-Idiotypic Antibody as a Booster Vaccine Against Respiratory Syncytial Virus.

Vaccines (Basel)

January 2025

Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA.

The respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in children and adults. With nearly everyone infected by the age of five, there is an opportunity to develop booster vaccines that enhance B-cell immunity, promoting potent and broadly neutralizing antibodies. One potential approach involves using anti-idiotypic antibodies (anti-IDs) to mimic specific antigenic sites and enhance preexisting immunity in an epitope-specific manner.

View Article and Find Full Text PDF

The global dissemination of SARS-CoV-2 led to a worldwide pandemic in March 2020. Even after the official downgrading of the COVID-19 pandemic, infection with SARS-CoV-2 variants continues. The rapid development and deployment of SARS-CoV-2 vaccines helped to mitigate the pandemic to a great extent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!