Highly efficient photosynthesis of hydrogen peroxide in ambient conditions.

Proc Natl Acad Sci U S A

Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, China;

Published: April 2021

Photosynthesis of hydrogen peroxide (HO) in ambient conditions remains neither cost effective nor environmentally friendly enough because of the rapid charge recombination. Here, a photocatalytic rate of as high as 114 μmol⋅g⋅h for the production of HO in pure water and open air is achieved by using a Z-scheme heterojunction, which outperforms almost all reported photocatalysts under the same conditions. An extensive study at the atomic level demonstrates that Z-scheme electron transfer is realized by improving the photoresponse of the oxidation semiconductor under visible light, when the difference between the Fermi levels of the two constituent semiconductors is not sufficiently large. Moreover, it is verified that a type II electron transfer pathway can be converted to the desired Z-scheme pathway by tuning the excitation wavelengths. This study demonstrates a feasible strategy for developing efficient Z-scheme photocatalysts by regulating photoresponses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072241PMC
http://dx.doi.org/10.1073/pnas.2103964118DOI Listing

Publication Analysis

Top Keywords

photosynthesis hydrogen
8
hydrogen peroxide
8
peroxide ambient
8
ambient conditions
8
electron transfer
8
highly efficient
4
efficient photosynthesis
4
conditions photosynthesis
4
conditions remains
4
remains cost
4

Similar Publications

Synthetic photobiocatalysts are promising catalysts for valuable chemical transformations by harnessing solar energy inspired by natural photosynthesis. However, the synergistic integration of all of the components for efficient light harvesting, cascade electron transfer, and efficient biocatalytic reactions presents a formidable challenge. In particular, replicating intricate multiscale hierarchical assembly and functional segregation involved in natural photosystems, such as photosystems I and II, remains particularly demanding within artificial structures.

View Article and Find Full Text PDF

ZnONPs alleviate cadmium toxicity in pepper by reducing oxidative damage.

J Environ Manage

December 2024

National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:

Cadmium (Cd) is a genotoxic heavy metal causing severe toxicity symptoms in plants, which has been a major threat to worldwide crop production. Recently, nanoparticles (NPs) have been employed as a novel strategy to facilitate the Cd stress and act as nano-fertilizers directly. Therefore, this study aims to explore the effects of zinc oxide nanoparticles (ZnONPs; 15 mg/L) on plant growth, photosynthetic activity, antioxidant activity and root morphology in Capsicum chinense Jacq.

View Article and Find Full Text PDF

Designed Synthesis of Mesoporous sp Carbon-Conjugated Benzothiadiazole Covalent Organic Frameworks for Artificial Photosynthesis of Hydrogen Peroxide.

ACS Appl Mater Interfaces

December 2024

Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.

Artificial photosynthesis of hydrogen peroxide (HO) from ambient air, water, and sunlight has attracted considerable attention recently. Despite being extremely challenging to synthesis, sp carbon-conjugated covalent organic frameworks (COFs) can be powerful and efficient materials for the photosynthesis of HO due to desirable properties. Herein, we report the designed synthesis of an sp carbon-conjugated COF, BTD-spc-COF, from benzothiadiazole and triazine units with high crystallinity and ultralarge mesopores (∼4 nm).

View Article and Find Full Text PDF

The photosynthesis of hydrogen peroxide (H2O2) from oxygen (O2) represents a promising catalytic pathway, the limited efficiency of the oxygen reduction constitutes a primary barrier to enhancing production. In this content, alkali metal potassium (K+) and Br-doped g-C3N4 photocatalysts (K-CN) were successfully constructed by one-pot method. The introduction of K+ is not only beneficial to the transmission of space charge and the separation efficiency of photogenerated carriers, but also promotes the efficient production of H2O2 by 2e- oxygen reduction reaction.

View Article and Find Full Text PDF

Mimicking natural enzymes through artificial enzyme engineering represents a powerful strategy to fine-tune the performance of photocatalysts, while the manipulation of electron transfer systems through atomic precision control is challenging. Herein, we reported a series of covalent organic frameworks (COFs) based on progressively oxidized phenothiazine (PTH) core as the platform for emulating Coenzyme Q, achieved through meticulous stepwise adjustments of their redox states. Compared to the original PTH-S-COF, the COFs with incrementally oxidized sulfur sites exhibited enhanced charge transfer efficiencies, facilitating efficient electron donation to O2 and thereby providing a favorable pathway for H2O2 synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!