Background: Frailty is a predictor of negative health outcomes in older adults. The physical frailty phenotype is an often used form for its operationalization. Some authors have pointed out limitations regarding the unidimensionality of the physical phenotype, introducing other dimensions in the approach to frailty. This study aimed to create a multidimensional model to evaluate frailty in older Brazilian adults and to compare the dimensions of the model created among the categories of the physical frailty phenotype.
Methods: A cross-sectional study was conducted using data from 3569 participants (73.7 ± 6.6 years) from a multicenter and multidisciplinary survey (FIBRA-BR). A three-dimensional model was developed: physical dimension (poor self-rated health, vision impairment, hearing impairment, urinary incontinence, fecal incontinence, and sleeping disorder), social dimension (living alone, not having someone who could help when needed, not visiting others, and not receiving visitors), and psychological dimension (depressive symptoms, concern about falls, feelings of sadness, and memory problems). The five criteria of the phenotype created by Fried and colleagues were used to evaluate the physical frailty phenotype. The proposed multidimensional frailty model was analyzed using factorial analysis. Pearson's chi-square test was used to analyze the associations between each variable of the multidimensional frailty model and the physical phenotype categories. Analysis of variance compared the multidimensional dimensions scores among the three categories of the physical frailty phenotype.
Results: The factorial analysis confirmed a model with three factors, composed of 12 variables, which explained 38.6% of the variability of the model data. The self-rated health variable was transferred to the psychological dimension and living alone variable to the physical dimension. The vision impairment and hearing impairment variables were dropped from the physical dimension. The variables significantly associated with the physical phenotype were self-rated health, urinary incontinence, visiting others, receiving visitors, depressive symptoms, concern about falls, feelings of sadness, and memory problems. A statistically significant difference in mean scores for physical, social, and psychological dimensions among three physical phenotype categories was observed (p < 0.001).
Conclusions: These results confirm the applicability of our frailty model and suggest the need for a multidimensional approach to providing appropriate and comprehensive care for older adults.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8045180 | PMC |
http://dx.doi.org/10.1186/s12877-021-02193-y | DOI Listing |
Cell Signal
December 2024
Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China. Electronic address:
This study aimed to investigate the underlying mechanisms by which physical exercise mitigates muscle atrophy induced by Dexamethasone (Dex). A muscle atrophy model was established in the mouse C2C12 cell line and 8-week-old mice treated with Dex, with subsequent verification of phenotype and atrogene expression. The potential benefits of combined aerobic and resistance exercise in mitigating muscle atrophy were then examined.
View Article and Find Full Text PDFJ Proteomics
December 2024
School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Medicine, University of Otago, Christchurch 8014, New Zealand; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand. Electronic address:
Extreme heterogeneity exists in the hypersensitive stress response exhibited by the dystrophin-deficient mdx mouse model of Duchenne muscular dystrophy. Because stress hypersensitivity can impact dystrophic phenotypes, this research aimed to understand the peripheral pathways driving this inter-individual variability. Male and female mdx mice were phenotypically stratified into "stress-resistant" or "stress-sensitive" groups based on their response to two laboratory stressors.
View Article and Find Full Text PDFComput Biol Med
December 2024
Complex Systems Laboratory, University Politehnica of Bucharest, Bucharest, Romania; Centre for Elderly and Nursing Home Medicine, University of Bergen, Bergen, Norway; Neuro-SysMed Center, University of Bergen, Bergen, Norway. Electronic address:
Heart rate response to physical activity is widely investigated in clinical and training practice, as it provides information on a person's physical state. For emerging digital phenotyping approaches, there is a need for individualized model estimation. In this study, we propose a zero-poles model and a data-driven evolutionary learning method for identification.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratorio de Biotecnología y Estudios Ambientales, Departamento de Ciencias y Tecnología Vegetal, Escuela de Ciencias y Tecnologías, Universidad de Concepción, Campus Los Ángeles, 4440000, Concepción, Chile.
Colobanthus quitensis is known for enduring extreme conditions, such as high salinity in Antarctica, making it an excellent model for studying environmental stress. In plant families, variations in seed color heteromorphism have been linked to various germination under stress conditions. Preliminary laboratory observations indicated that dark brown seeds of C.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia.
Background: Data on the genetic factors contributing to inter-individual variability in muscle fiber size are limited. Recent research has demonstrated that mice lacking the Arkadia (RNF111) N-terminal-like PKA signaling regulator 2N (; also known as ) gene exhibit reduced muscle fiber size, contraction force, and exercise capacity, along with defects in calcium handling within fast-twitch muscle fibers. However, the role of the gene in human muscle physiology, and particularly in athletic populations, remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!