The superior longitudinal fascicle/fasciculus (SLF) is a major white matter tract connecting the frontal and parietal cortices in humans. Although the SLF has often been analyzed as a single entity, several studies have reported that the SLF is segregated into three distinct branches (SLF I, II, and III). They have also reported the right lateralization of the SLF III volume and discussed its relationship with lateralized cortical functions in the fronto-parietal network. However, to date, the homogeneity or heterogeneity of the age dependency and lateralization properties of SLF branches have not been fully clarified. Through this study, we aimed to clarify the age dependency and lateralization of SLF I-III by analyzing diffusion-weighted MRI (dMRI) and quantitative R1 (qR1) map datasets collected from a wide range of age groups, mostly comprising right-handed children, adolescents, adults, and seniors (6 to 81 years old). The age dependency in dMRI measurement (fractional anisotropy, FA) was heterogeneous among the three SLF branches, suggesting that these branches are regulated by distinct developmental and aging processes. Lateralization analysis on SLF branches revealed that the right SLF III was larger than the left SLF III in adults, replicating previous reports. FA measurement also suggested that, in addition to SLF III, SLF II was lateralized to the right hemisphere in adolescents and adults. We further found a left lateralization of SLF I in qR1 data, a microstructural measurement sensitive to myelin levels, in adults. These findings suggest that the SLF sub-bundles are distinct entities in terms of age dependency and lateralization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cortex.2021.02.027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!