Comparative study on the intestinal absorption of three gastrodin analogues via the glucose transport pathway.

Eur J Pharm Sci

NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; TCM-Integrated Hospital of Southern Medical University, 510315 Guangzhou, China. Electronic address:

Published: August 2021

Gastrodin is the main active constituent of Tianma, a famous traditional Chinese herbal medicine. Our previous research has found that gastrodin is absorbed rapidly in the intestine by the sodium-dependent glucose transporter 1 (SGLT1). In the current report, gastrodin is the best glycoside compound absorbed via the glucose transport pathway. This study aimed to investigate the effect of the slight difference in chemical structure on the drug intestinal absorption via the glucose transport pathway. Traditional biopharmaceutical and computer-aided molecular docking methods were used to evaluate the intestinal absorption characteristics of three gastrodin analogues, namely, salicin, arbutin and 4-methoxyphenyl-β-D-glucoside (4-MG). The oil-water partition coefficient (logP) experiments showed that the logP values of the gastrodin analogues followed the order: 4-MG > salicin > arbutin. In vitro Caco-2 cell transport experiments demonstrated that the apparent permeability coefficient (P) value of arbutin was higher than those of salicin and 4-MG. In situ single-pass intestinal perfusion experiments showed that the absorption of arbutin and 4-MG was better than that of salicin and that the absorption of the three compounds in the colon was lower than that in the small intestine. Quantitative real-time polymerase chain reaction results confirmed that the SGLT1 mRNA expression in the small intestine of rats was obviously higher than that in the colon of rats. In vivo pharmacokinetic experiments demonstrated that the oral bioavailability of salicin was lower than those of arbutin and 4-MG. In vitro and in vivo experiments showed that glucose or phlorizin (SGLT1 inhibitor) could decrease the intestinal absorption of the three compounds. Contrary to the above biopharmaceutical experiments, the computer-aided molecular docking test showed that the affinity of salicin to the vSGLT receptor was stronger than those of arbutin and 4-MG. In conclusion, the SGLT1 can facilitate the intestinal absorption of salicin, arbutin and 4-MG, and the slight difference in chemical structure can affect absorption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2021.105839DOI Listing

Publication Analysis

Top Keywords

intestinal absorption
20
arbutin 4-mg
16
absorption three
12
gastrodin analogues
12
glucose transport
12
transport pathway
12
salicin arbutin
12
absorption
8
three gastrodin
8
slight difference
8

Similar Publications

Intestinal epithelial cell NCoR deficiency ameliorates obesity and metabolic syndrome.

Acta Pharm Sin B

December 2024

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Nuclear receptor corepressor (NCoR1) interacts with various nuclear receptors and regulates the anabolism and catabolism of lipids. An imbalance in lipid/energy homeostasis is also an important factor in obesity and metabolic syndrome development. In this study, we found that the deletion of NCoR1 in intestinal epithelial cells (IECs) mainly activated the nuclear receptor PPAR and attenuated metabolic syndrome by stimulating thermogenesis.

View Article and Find Full Text PDF

Bacillus subtilis HGCC-1 improves growth performance and liver health via regulating gut microbiota in golden pompano.

Anim Microbiome

January 2025

China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Probiotics as green inputs have been reported to regulate metabolism and immunity of fish. However, the mechanisms by which probiotics improve growth and health of fish are unclear. Therefore, the aim of this study was to investigate the effect of Bacillus subtilis HGCC-1, an indigenous probiotic isolated from fish, on growth performance, host lipid metabolism, liver inflammation and gut microbiota of golden pompano.

View Article and Find Full Text PDF

Prebiotics as modulators of colonic calcium and magnesium uptake.

Acta Physiol (Oxf)

February 2025

Institute for Molecular Medicine, Health and Medical University Potsdam, Potsdam, Germany.

Ca and Mg are essential nutrients, and deficiency can cause serious health problems. Thus, lack of Ca and Mg can lead to osteoporosis, with incidence rising both in absolute and age-specific terms, while Mg deficiency is associated with type II diabetes. Prevention via vitamin D or estrogen is controversial, and the bioavailability of Ca and Mg from supplements is significantly lower than that from milk products.

View Article and Find Full Text PDF

The human intestine plays a pivotal role in nutrient absorption and immune system regulation. Along the longitudinal axis, cell-type composition changes to meet the varying functional requirements. Therefore, our protocol focuses on the processing of the whole human intestine to facilitate the analysis of region-specific characteristics such as tissue architecture and changes in cell populations.

View Article and Find Full Text PDF

Background: Lysinuric protein intolerance (LPI) is a metabolic disorder that leads to dysfunctional intestinal absorption and kidney clearance of cationic amino acids. Chronic kidney disease develops in many LPI patients and leads to end-stage kidney disease in at least 10% of patients. Since data on kidney transplants in LPI patients are limited, we analysed the outcomes of LPI patients after transplantation in Finland.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!