Artificial intelligence-enhanced white-light colonoscopy with attention guidance predicts colorectal cancer invasion depth.

Gastrointest Endosc

Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Mechanobiology Institute, National University of Singapore, Singapore; Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A∗STAR), Singapore; CAMP, Singapore-MIT Alliance for Research and Technology, Singapore; Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, Singapore.

Published: September 2021

Background And Aims: Endoscopic submucosal dissection (ESD) and EMR are applied in treating superficial colorectal neoplasms but are contraindicated by deeply invasive colorectal cancer (CRC). The invasion depth of neoplasms can be examined by an automated artificial intelligence (AI) system to determine the applicability of ESD and EMR.

Methods: A deep convolutional neural network with a tumor localization branch to guide invasion depth classification was constructed on the GoogLeNet architecture. The model was trained using 7734 nonmagnified white-light colonoscopy (WLC) images supplemented by image augmentation from 657 lesions labeled with histopathologic analysis of invasion depth. An independent testing dataset consisting of 1634 WLC images from 156 lesions was used to validate the model.

Results: For predicting noninvasive and superficially invasive neoplasms, the model achieved an overall accuracy of 91.1% (95% confidence interval [CI], 89.6%-92.4%), with 91.2% sensitivity (95% CI, 88.8%-93.3%) and 91.0% specificity (95% CI, 89.0%-92.7%) at an optimal cutoff of .41 and the area under the receiver operating characteristic (AUROC) curve of .970 (95% CI, .962-.978). Inclusion of the advanced CRC data significantly increased the sensitivity in differentiating superficial neoplasms from deeply invasive early CRC to 65.3% (95% CI, 61.9%-68.8%) with an AUROC curve of .729 (95% CI, .699-.759), similar to experienced endoscopists (.691; 95% CI, .624-.758).

Conclusions: We have developed an AI-enhanced attention-guided WLC system that differentiates noninvasive or superficially submucosal invasive neoplasms from deeply invasive CRC with high accuracy, sensitivity, and specificity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gie.2021.03.936DOI Listing

Publication Analysis

Top Keywords

invasion depth
16
deeply invasive
12
white-light colonoscopy
8
colorectal cancer
8
wlc images
8
noninvasive superficially
8
invasive neoplasms
8
auroc curve
8
neoplasms deeply
8
95%
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!