Advancements in Microfluidic Systems for the Study of Female Reproductive Biology.

Endocrinology

Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago 60607, USA.

Published: October 2021

The female reproductive tract is a highly complex physiological system that consists of the ovaries, fallopian tubes, uterus, cervix, and vagina. An enhanced understanding of the molecular, cellular, and genetic mechanisms of the tract will allow for the development of more effective assisted reproductive technologies, therapeutics, and screening strategies for female specific disorders. Traditional 2-dimensional and 3-dimensional static culture systems may not always reflect the cellular and physical contexts or physicochemical microenvironment necessary to understand the dynamic exchange that is crucial for the functioning of the reproductive system. Microfluidic systems present a unique opportunity to study the female reproductive tract, as these systems recapitulate the multicellular architecture, contacts between different tissues, and microenvironmental cues that largely influence cell structure, function, behavior, and growth. This review discusses examples, challenges, and benefits of using microfluidic systems to model ovaries, fallopian tubes, endometrium, and placenta. Additionally, this review also briefly discusses the use of these systems in studying the effects of endocrine disrupting chemicals and diseases such as ovarian cancer, preeclampsia, and polycystic ovarian syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571709PMC
http://dx.doi.org/10.1210/endocr/bqab078DOI Listing

Publication Analysis

Top Keywords

microfluidic systems
12
female reproductive
12
study female
8
reproductive tract
8
ovaries fallopian
8
fallopian tubes
8
review discusses
8
systems
6
reproductive
5
advancements microfluidic
4

Similar Publications

: The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a highly pathogenic virus causing severe respiratory illness, with limited treatment options that are mostly supportive. The success of mRNA technology in COVID-19 vaccines has opened avenues for antibody development against MERS-CoV. mRNA-based antibodies, expressed in vivo, offer rapid adaptability to viral mutations while minimizing long-term side effects.

View Article and Find Full Text PDF

This paper introduces a Coriolis mass flow and density sensor. The sensor is made using Surface Channel Technology (SCT) but with selective wet etching to create the channels. This method forms suspended microfluidic channels with a larger cross-sectional area.

View Article and Find Full Text PDF

(1) Background: Fetal chromosomal examination is a critical component of modern prenatal testing. Traditionally, maternal serum biomarkers such as free β-human chorionic gonadotropin (Free β-HCG) and pregnancy-associated plasma protein A (PAPPA) have been employed for screening, achieving a detection rate of approximately 90% for fetuses with Down syndrome, albeit with a false positive rate of 5%. While amniocentesis remains the gold standard for the prenatal diagnosis of chromosomal abnormalities, including Down syndrome and Edwards syndrome, its invasive nature carries a significant risk of complications, such as infection, preterm labor, or miscarriage, occurring at a rate of 7 per 1000 procedures.

View Article and Find Full Text PDF

Modeling Electrowetting on Dielectric for Novel Droplet-Based Microactuation.

Micromachines (Basel)

December 2024

Department of Mechanical Engineering, Brigham Young University, 350 Engineering Building, Provo, UT 84602, USA.

Recent advancements in Electrowetting on Dielectric (EWOD) systems, such as simplified fabrication, low-voltage actuation, and the development of more reliable materials, are expanding the potential applications of electrowetting actuators. One application of EWOD actuators is in RF devices to enable dynamic reconfiguration and allow real-time adjustments to frequency and bandwidth. In this paper, a method is introduced to actuate a panel using EWOD forces.

View Article and Find Full Text PDF

Designing Microfluidic-Chip Filtration with Multiple Channel Networks for the Highly Efficient Sorting of Cell Particles.

Micromachines (Basel)

December 2024

Complex Fluids Laboratory, Advanced Materials and Systems Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.

Microfluidic-chip based hydrodynamic filtration is one of the passive sorting techniques that can separate cell or particle suspensions into subpopulations of different sizes. As the branch channels and side channels play an important role in maintaining particle focusing, their rational design is necessary for highly efficient sorting. A model framework involving multiple side and multiple branch channels has been developed by extending the analytical analysis of three-dimensional laminar flow in channel networks, which was previously validated by comparison with numerical simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!