Analysis of regulatory networks is a powerful framework for identification and quantification of intracellular interactions. We introduce miRGTF-net, a novel tool for construction of miRNA-gene-TF networks. We consider multiple transcriptional and post-transcriptional interaction types, including regulation of gene and miRNA expression by transcription factors, gene silencing by miRNAs, and co-expression of host genes with their intronic miRNAs. The underlying algorithm uses information on experimentally validated interactions as well as integrative miRNA/mRNA expression profiles in a given set of samples. The latter ensures simultaneous tissue-specificity and biological validity of interactions. We applied miRGTF-net to paired miRNA/mRNA-sequencing data of breast cancer samples from The Cancer Genome Atlas (TCGA). Together with topological analysis of the constructed network we showed that considered players can form reliable prognostic gene signatures for ER-positive breast cancer. A number of signatures demonstrated remarkably high accuracy on transcriptomic data obtained by both microarrays and RNA sequencing from several independent patient cohorts. Furthermore, an essential part of prognostic genes were identified as direct targets of transcription factor E2F1. The putative interplay between estrogen receptor alpha and E2F1 was suggested as a potential recurrence factor in patients treated with tamoxifen. Source codes of miRGTF-net are available at GitHub (https://github.com/s-a-nersisyan/miRGTF-net).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046230PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249424PLOS

Publication Analysis

Top Keywords

breast cancer
12
mirgtf-net
4
mirgtf-net integrative
4
integrative mirna-gene-tf
4
mirna-gene-tf network
4
network analysis
4
analysis reveals
4
reveals key
4
key drivers
4
drivers breast
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!