The blood-brain barrier (BBB) keeps pathogens and toxins out of the brain but also impedes the entry of pharmaceuticals. Human cerebral microvascular endothelial cells (hCMECs) and astrocytes are the main functional cell components of the BBB. Although available commercially as cryopreserved cells in suspension, improvements in their cryopreservation and distribution as cryopreserved monolayers could enhance BBB in vitro studies. Here, we examined the response to slow cooling and storage in liquid nitrogen of immortalized hCMEC/D3 cells and human primary astrocytes in suspension and in monolayers. HCMEC/D3 cells in suspension cryopreserved in 5% dimethyl sulfoxide (DMSO) and 95% fetal bovine serum or in 5% DMSO and 6% hydroxyethyl starch (HES) showed post-thaw membrane integrities above 90%, similar to unfrozen control. Cryopreservation did not affect the time-dependent ability of hCMEC/D3 cells to form tubes on Matrigel. Primary astrocytes in suspension cryopreserved in the presence of 5% DMSO and 6% HES had improved viability over those cryopreserved in 10% DMSO. Monolayers of single cultures or co-cultures of hCMEC/D3 cells and astrocytes on fibronectin-coated Rinzl coverslips retained membrane integrities and metabolic function, after freezing in 5% DMSO, 6% HES, and 2% chondroitin sulfate, that were comparable to those of unfrozen controls even after overnight incubation. Rinzl is better than glass or Thermanox as an underlying solid substrate for cryopreserving hCMEC/D3 monolayers. Cryopreserved hCMEC/D3 monolayers expressed the junction proteins ZO-1 and claudin-5 similar to their unfrozen counterparts. Hence, we describe improved cryopreservation protocols for hCMEC/D3 cells and astrocytes in suspension, and a novel protocol for the cryopreservation of monolayers of hCMEC/D3 cells and astrocytes as single cultures or co-cultures that could expand their distribution for research on disease modeling, drug screening, and targeted therapy pertaining to the BBB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046249 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249814 | PLOS |
Front Pharmacol
January 2025
Department of Geriatric Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
Endothelial cell dysfunction plays a crucial role in the early development of cerebral small vessel disease (CSVD). Arginase-1 (ARG1) is expressed in endothelial cells, and its deficiency may exacerbate cerebrovascular damage by increasing reactive oxygen species (ROS) production, thereby inducing endothelial cell apoptosis. Berbamine (BBM) has shown potential in neuroprotection and cardiovascular disease prevention.
View Article and Find Full Text PDFBBA Adv
December 2024
University of São Paulo, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), São Paulo, 05508-000, Brazil.
Metastases are the leading cause of cancer-related deaths, and their origin is not fully elucidated. Recently, studies have shown that extracellular vesicles (EVs), particularly small extracellular vesicles (sEV), can disrupt the homeostasis of organs, promoting the development of a secondary tumor. However, the role of sEV in brain endothelium and their association with metastasis related to breast cancer is unknown.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Laboratory of Immunoendocrinology Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland.
Oxidative stress and neuroinflammation play a pivotal role in pathomechanisms of brain ischemia. Our research aimed to formulate a nanotheranostic system for delivering carnosic acid as a neuroprotective agent with anti-oxidative and anti-inflammatory properties to ischemic brain tissue, mimicked by organotypic hippocampal cultures (OHCs) exposed to oxygen-glucose deprivation (OGD). In the first part of this study, the nanocarriers were formulated by encapsulating two types of nanocores (nanoemulsion (AOT) and polymeric (PCL)) containing CA into multilayer shells using the sequential adsorption of charged nanoobjects method.
View Article and Find Full Text PDFJ Physiol
January 2025
Vascular Physiology Laboratory, Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.
Ischaemic stroke is a leading cause of death and disability. Circulating extracellular vesicles (EVs) post-stroke may help brain endothelial cells (BECs) counter ischaemic injury. However data on how EVs from ischaemic stroke patients, considering injury severity, affect these cells are limited.
View Article and Find Full Text PDFArch Gerontol Geriatr
December 2024
Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, PR China. Electronic address:
Ischemic stroke, a severe cerebrovascular disease, is particularly prevalent among the elderly. Rsearch has indicated that histone deacetylases (HDACs) are pivotal in the pathogenesis of ischemic stroke. We introduce a novel HDACs inhibitor, HDI-1, as a potential therapeutic strategy for this condition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!