Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With the aid of neural networks, this article develops two data-driven designs of fault detection (FD) for dynamic systems. The first neural network is constructed for generating residual signals in the so-called finite impulse response (FIR) filter-based form, and the second one is designed for recursively generating residual signals. By theoretical analysis, we show that two proposed neural networks via self-organizing learning can find their optimal architectures, respectively, corresponding to FIR filter and recursive observer for FD purposes. Additional contributions of this study lie in that we establish bridges that link model- and neural-network-based methods for detecting faults in dynamic systems. An experiment on a three-tank system is adopted to illustrate the effectiveness of two proposed neural network-aided FD algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2021.3071292 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!