The electrocatalytic carbon dioxide (CO ) reduction reaction (CO RR) into hydrocarbons is a promising approach for greenhouse gas mitigation, but many details of this dynamic reaction remain elusive. Here, time-resolved surface-enhanced Raman spectroscopy (TR-SERS) is employed to successfully monitor the dynamics of CO RR intermediates and Cu surfaces with sub-second time resolution. Anodic treatment at 1.55 V vs. RHE and subsequent surface oxide reduction (below -0.4 V vs. RHE) induced roughening of the Cu electrode surface, which resulted in hotspots for TR-SERS, enhanced time resolution (down to ≈0.7 s) and fourfold improved CO RR efficiency toward ethylene. With TR-SERS, the initial restructuring of the Cu surface was followed (<7 s), after which a stable surface surrounded by increased local alkalinity was formed. Our measurements revealed that a highly dynamic CO intermediate, with a characteristic vibration below 2060 cm , is related to C-C coupling and ethylene production (-0.9 V vs. RHE), whereas lower cathodic bias (-0.7 V vs. RHE) resulted in gaseous CO production from isolated and static CO surface species with a distinct vibration at 2092 cm .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362134 | PMC |
http://dx.doi.org/10.1002/anie.202104114 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!