Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An electrocatalytic palladium membrane reactor (ePMR) uses electricity and water to drive hydrogenation without H gas. The device contains a palladium membrane to physically separate the formation of reactive hydrogen atoms from hydrogenation of the unsaturated organic substrate. This separation provides an opportunity to independently measure the hydrogenation reaction at a surface without any competing H activation or proton reduction chemistry. We took advantage of this feature to test how different metal catalysts coated on the palladium membrane affect the rates of hydrogenation of C=O and C=C bonds. Hydrogenation occurs at the secondary metal catalyst and not the underlying palladium membrane. These secondary catalysts also serve to accelerate the reaction and draw a higher flux of hydrogen through the membrane. These results reveal insights into hydrogenation chemistry that would be challenging using thermal or electrochemical hydrogenation experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202017082 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!