Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The study of the water-splitting process, which can proceed in 2e as well as 4e pathway, reveals that the process is entirely an uphill process, and the third step, that is, the oxooxo bond formation is the rate-determining step. The kinetic barrier of the oxygen evolution reaction (OER) on the 2D material catalysts in the presence of explicit solvents is scarcely studied. Here, we investigate the dynamics of the OER on the undoped graphene and the activation energy barrier of each step using first principles molecular dynamics simulations. Here we provide a detailed analysis of the kinetics of all the 4e transfer steps of OER on the graphene surface. We also compare the accuracy of one of the density functional theory (DFT) functionals and density functional based tight binding (DFTB) method in explaining the OER steps. The comparative study reveals that DFTB can be used for performing metadynamics simulations quipped with much less computational cost than DFT functionals. By both Perdew-Burke-Ernzerhof and DFTB methods, the third step is revealed to be the rate-determining step with an energy barrier of 21.19 ± 0.51 and 20.23 ± 0.20 kcal mol , respectively. DFTB gives an impression of being successful in predicting the energy barriers of OER in 4e- transfer pathway and comparable to the DFT method, and we would like to extend the use of DFTB for further studies with a sizable and complex system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.26528 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!